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Fecal microbiota transplantation (FMT) is the medical proce-
dure of transferring human fecal matter from a healthy donor 
to a recipient to treat a disease related to microbiome imbal-

ance. FMT has shown nearly 90% success rate for the treatment of 
recurrent Clostridioides difficile infection (rCDI)1,2, for which it is 
approved in clinical practice3. FMT has been explored more recently 
for other diseases associated with microbiome alterations4–6 or to 
support other therapies7–9, but its efficacy is usually lower and 
less consistent over cohorts than for rCDI10,11. Some factors that 
may explain this variability include the presence or abundance of 
single bacteria and the diversity of the patient microbiome at base-
line5,6, clinical characteristics of the disease12, the composition of 
the donor’s gut microbiome13, specific aspects of the FMT working 
protocols (for example route of delivery, amount of infused feces)14 
and differential engraftment among species5,6. Yet, it is generally 

unknown how strain engraftment might be linked with clinical 
remission after FMT.

The mechanisms and dynamics dictating which donor microbes 
can engraft in the recipient are poorly understood. Initial studies 
able to track the transmission of donor strains to the recipient have 
been performed on very few donor–recipient pairs15. Availability of 
larger FMT trials and the advances in strain-resolved metagenomics 
enabled deeper analyses that started unraveling the engraftment effi-
ciency of FMT across diseases and led to the development of statisti-
cal models to predict the post-FMT microbiome composition16. Such 
investigations remained confined to single cohorts16–21, with unan-
swered questions about cross-cohort and cross-condition generaliz-
ability. As deeper strain-level metagenomics is possible22–24 and not 
limited to well characterized microbial taxa25, and as more metage-
nomic datasets are becoming available7–9,15–18,26–35, an integrative  
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Fecal microbiota transplantation (FMT) is highly effective against recurrent Clostridioides difficile infection and is considered 
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metagenomic analysis may allow uncovering general patterns of 
microbial engraftment and connected clinical outcomes.

Here, we present a systematic meta-analysis of 24 studies that 
investigated FMT in different clinical settings for which we employed 
new strain-resolved metagenomic approaches to unravel the dynam-
ics of FMT engraftment and its links with clinical outcomes.

results
A meta-analysis of public and new FMT metagenomic datas-
ets. We retrieved all FMT studies with publicly available data that 
assessed microbiome composition of donors and recipients (pre- 
and post-FMT) through shotgun metagenomics (Methods). This 
search yielded a total of 21 datasets (Table 1 and Supplementary 
Table 1)7–9,15–18,26–35. In each study, we removed samples that were not 
sequenced at sufficient depth (<1 Gbp) or with evidence of misla-
beling (Methods). The retained metagenomes belong to 203 FMT 
procedures for which at least one sample is available from each 
member of the ‘FMT triad’: the pre-FMT recipient, the post-FMT 
recipient and the corresponding donor. When multiple post-FMT 
samples were available, we selected the post-FMT sample collected 
closest to 1 month after FMT, as 30 days was the value that mini-
mizes the overall time deviation (Supplementary Fig. 1; Methods).

We additionally sequenced 116 stool samples (23 FMT tri-
ads) from three cohorts of patients with rCDI, inflammatory 
bowel disease (IBD) and clinically relevant colonization by 
multidrug-resistant bacteria (MDRB) (Table 1 and Supplementary 
Table 2; Methods) enrolled in prospective case series from Italy 
(Fondazione Policlinico Gemelli IRCCS and Bambino Gesù 
Children’s Hospital; Methods) and sequenced at a higher read depth 
than most existing FMT datasets (Supplementary Figs. 2 and 3).

In total, 1,371 samples and 226 FMT triads from 24 different 
cohorts (Table 1) were included in the analysis covering nine clini-
cal conditions, including rCDI (n = 9), IBD (n = 5), MDRB (n = 3), 
melanoma (n = 2) and metabolic syndrome (n = 2), and single 
cohorts of irritable bowel syndrome (IBS), Tourette syndrome and 
diarrhea induced by tyrosine kinase inhibitors7–9,15–18,26–35. Studies 
enrolled adult participants with the exception of HouriganS_2019 
(ref. 29), ZhaoH_2020 (ref. 35), This_study_MDRB and This_study_
IBD and originated from countries with Mediterranean (France, 
Italy, Israel) and Northern European lifestyles (Germany, the 
Netherlands, Norway), in North America (USA) and China. All 
samples were processed following the same computational pipeline, 
from quality-control to analysis by strain-level profiling including 

yet-to-be-characterized species based on the species-level genome 
bins (SGBs; Methods) framework25. While we used all 1,371 samples 
(together with 4,443 samples from unrelated longitudinal datasets) 
to optimally delineate strain identity, we limited the analyses to one 
post-FMT sample per FMT triad (559 samples).

Strain-level metagenomics can assess microbial engraftment. 
To identify the transfer and engraftment of the donor microbi-
ome in the recipient, we exploited the observation that microbial 
strains are generally specific to individuals and rarely found shared 
between unrelated individuals22,23,36. We adopted an operational 
species-specific definition of ‘strain’37,38 by comparing phylogenetic 
distance distributions of microbial genetic profiles of a given spe-
cies sampled from the same individual over multiple timepoints 
with those distributions obtained comparing profiles from unre-
lated individuals (Supplementary Table 3; Methods). We imple-
mented the approach and the species-specific cut-offs that define 
strain identity within StrainPhlAn 4 (ref. 39), which we empowered 
with a custom database of marker gene sequences from around 
729,000 microbial genomes and metagenome-assembled genomes 
(MAGs). With such references, StrainPhlAn is able to detect and 
model strains belonging to a total of 4,992 yet-to-be-characterized 
species25; that is, unknown SGBs (uSGBs; Methods).

The StrainPhlAn-based pipeline allowed generating a map of 
between-samples strain sharing events that we recapitulated in undi-
rected networks based on the number of common strains between 
samples (Fig. 1a and Extended Data Fig. 1; Methods). These net-
works confirmed that samples from the same FMT triad tend to 
share many more strains than unrelated individuals, whereas they 
are connected only weakly to samples of other FMT triads in the 
same cohort (Fig. 1a, PERMANOVA by FMT triad and dataset 
on strain sharing-based dissimilarity metric, R2 = [0.05–0.61] and 
Q < 0.1 in 14 of the 24 datasets; Supplementary Table 4).

To account for different numbers of strains that can be analyzed 
over samples, we defined the strain-sharing rate metric as the num-
ber of strains found identical in two samples divided by the num-
ber of species with available strain profiles that are present in both 
samples (Methods). K-medoids clustering on strain-sharing rates 
yielded clusters of higher purity with respect to FMT triad mem-
bership than β-diversity measures (Fig. 1c, Extended Data Fig. 2 
and Supplementary Table 5; Methods) and a t-distributed stochas-
tic neighbor embedding (t-SNE) projection also separates samples 
by FMT triad membership (Fig. 1b and Extended Data Fig. 3). 

Table 1 | Summary and main characteristics of the FMt datasets included in this meta-analysis

Disease No. of datasets 
(new datasets)

No. of recipients 
(new recipients)

No. of samples 
(new samples)

Median no. 
of post-FMt 
samples [IQr]

Disease 
category

Countries

Clostridioides difficile infection 9 (1) 96 (16) 529 (94) 2.0 [3.0] Infectious Italy, Germany, Norway, 
USA, Canada

Inflammatory bowel disease 5 (1) 38 (2) 188 (8) 2.0 [1.0] Chronic France, Italy, USA

Multidrug-resistant bacteria 
colonization

3 (1) 21 (5) 109 (13) 1.0 [2.0] Infectious Italy, Israel, France, the 
Netherlands, Switzerland

Melanoma 2 24 248 4 [7] Oncological Israel, USA

Tourette syndrome 1 5 25 2.0 [0.0] Chronic China

Metabolic syndrome 2 16 154 3 [0.2] Chronic the Netherlands

Irritable bowel syndrome 1 20 91 2.0 [0.0] Chronic Norway

Tyrosine kinase 
inhibitor-dependent diarrhea

1 6 27 2.0 [1.5] Oncological Italy

total 24 (3) 226 (23) 1,371 (116) 2 [2]

Numbers in parenthesis refer to data collected specifically for the present study.
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Strain-level metagenomics can thus accurately describe strain shar-
ing events within FMT triads.

Donor–recipient relationship influences post-FMT engraft-
ment. Strain-sharing rates were much higher between post-FMT 
and donor samples (median 57%), and between pre-FMT and 
post-FMT samples (60%) than between donors and pre-FMT 
recipients (4.8%). The substantial increase in donor–recipient strain 
sharing after FMT is also significantly stronger than the decrease 
in β-diversity (Wilcoxon signed-rank test, P = 7 × 10−23; Fig. 1d 
and Supplementary Table 6; Methods), confirming that the strain 
identity-based profiling approach better captures the microbi-
ome remodeling induced by FMT compared with species-level 
β-diversity measures.

Overall, 58.4% of post-FMT samples shared more strains with 
corresponding donor samples than with their pre-FMT. However, 
the difference in shared strains between donor/post-FMT samples 
and pre-FMT/post-FMT samples differed substantially across FMT 
triads (median = −3; range = −96–75; Extended Data Fig. 1 and 
Supplementary Fig. 4). We also found that pre-FMT recipients 
shared more strains with related (usually cohabitating) donors than 
with unrelated donors (that is, donors in the original studies that 
were specified as unrelated, or recruited through public advertise-
ment or hospital cohorts (Fig. 1e), related versus unrelated, permu-
tation test P < 1 × 10–4, median strain sharing rate difference = 0.18). 
This also holds in datasets in which only a subset of the donors 
and recipients were related (Fig. 1e; P < 1 × 10–4). We accounted for 
these potential baseline strain sharing biases by subtracting them 
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Fig. 1 | Overview of microbial strain sharing in FMt studies. a, Strain-sharing networks of the two new FMT cohorts with C. difficile and MDRB colonization 
and of two published FMT cohorts9,30. Nodes represent samples and are colored by role in FMT triads. The letters correspond to the donor subject and 
letter/number combinations indicate both associated donors (the letter) and FMT instance membership (the number) of pre-/post-FMT samples. 
Edges report strain sharing (minimum 2) and their opacity is scaled to the maximum number of shared strains in each dataset (indicated in the top right 
corner). Extended Data Fig. 1 reports the networks of all 24 datasets. b, Ordination of samples from all cohorts based on strain sharing rates (t-SNE with 
perplexity = 20). See Extended Data Fig. 3 for a PCoA ordination. c, Strain-sharing enabled more precise reconstructions of the true FMT triads compared 
with species-level β-diversities (Extended Data Fig. 2 and Supplementary Table 5). We compare the K-medoids clustering purity of FMT triads between 
strain-sharing distances and on Bray–Curtis dissimilarities/Aitchison distances as a function of the number of clusters K. d, Strain-sharing rate and Bray–
Curtis similarity between pairs of samples show that strain-sharing rates increase much more after FMT compared with Bray–Curtis similarity. Significance 
was assessed by Mann–Whitney U-tests and the two-tailed P values were FDR-adjusted using the BH method. All pairwise tests are significant except 
for those labeled NS. All P and Q values are reported in Supplementary Table 6. e, Distribution of strain-sharing rates between donor and corresponding 
recipient pre-FMT samples showing that donors share more strains with recipients pre-FMT when the individuals are ‘related’ (same family/household or 
friends; Methods). Boxplots report the median and upper/lower quartiles, whiskers are at 1.5 times higher/lower of the upper/lower quartiles.
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from post-FMT engraftment rates, resulting in significantly lower 
estimates (Wilcoxon signed-rank test, p = 1 × 10–9; Supplementary  
Fig. 5 and Extended Data Fig. 4; Methods). Together, these data 
confirm that the extent of donor microbiome engraftment is vari-
able and influenced by pre-FMT donor–recipient relatedness.

Combined FMT administration associates with strain engraft-
ment. To assess the main determinants of post-FMT strain engraft-
ment, we first performed a multivariate analysis including clinical 
variables that could potentially influence engraftment (infectious/
noninfectious disease, antibiotics treatment), recipient and donor 
microbiome characteristics (α-diversity, species-level dissimilarity 
and strain sharing rate at baseline, recipient age and geographical 
region) and other procedural features that were consistently avail-
able across datasets (administration of fresh/frozen stool, amount of 
feces administered, route of administration and bead-beating steps 
in the DNA extraction protocol; Methods). By fitting a partial least 
squares (PLS) regression model (Methods), we found that only the 
first two components were significantly associated with engraft-
ment, explaining 18.7% (Q = 6 × 10–10) and 4.6% (Q = 3.8 × 10–3) of 
the variation (Extended Data Fig. 5). Only FMT administration 
through a mixed route combining upper gastrointestinal tract 
administration (by capsules, enteroscopy, nasogastric tube, naso-
duodenal tube or upper endoscopy) and lower gastrointestinal 
tract administration (by colonoscopy) was significantly associated 
with the first PLS component (P = 0.016). Indeed, route of delivery 
emerged as the variable most significantly associated with strain 
engraftment also in univariate testing (P = 0.0093; Fig. 2b). So far, 
no consensus exists as to a recommended route of administration 
in FMT protocols40 and, whereas our results suggest that combined 
routes increase the engraftment likelihood, the observation is based 
on only four studies adopting this approach. Importantly, intake of 
antibiotics (14 studies with antibiotic intake before FMT, 10 with-
out) and disease category (12 studies on infectious diseases, 12 on 
noninfectious) were significantly associated with strain engraft-
ment in cohorts that employed a single administration route (n = 19 
datasets, permutation test antibiotics treatment and infectious dis-
ease versus no antibiotics and noninfectious disease, P = 0.027), and 
both were associated with the first two PLS components while being 
highly correlated with each other (Supplementary Fig. 6; Methods).

FMT engraftment is linked to antibiotics and infectious diseases. 
We examined the extent of donor strain engraftment over strain 
retention in FMT recipients by comparing the fraction of donor 
strains detectable in the post-FMT sample (fraction of donor strains) 
with the fraction of pre-FMT strains detectable in the post-FMT 
sample (fraction of retained strains; Fig. 2a). We found that patients 
who received antibiotics before FMT—as part of their therapy for 
underlying diseases or as pretreatment before FMT—had a signifi-
cantly higher fraction of donor strains compared with the fraction 
of retained strains, as was previously reported in the context of 
ulcerative colitis41 (Wilcoxon signed-rank test, P = 2 × 10–16), while 
the opposite was true for recipients who did not receive antibiotics 
(Wilcoxon signed-rank test, P = 1 × 10–5, Fig. 2a). Antibiotic treat-
ment thus seems to lead to enhanced donor strain engraftment 
and decreased strain retention in the FMT recipient, possibly by 
reducing colonization resistance in the recipient42. Recipients with 
infectious diseases also had comparatively higher fractions of donor 
strains compared with the fraction of retained strains (Wilcoxon 
signed-rank test, P = 8 × 10–16), while the opposite was true in 
patients with noninfectious diseases (Wilcoxon signed-rank test, 
P = 6 × 10–4).

Patients with recurrent or resistant infectious diseases often have 
a long history of repeated antibiotic courses and are pretreated with 
specific antibiotics before FMT, while only two of the noninfectious 
disease cohorts (SuskindD_2015 and BaruchE_2020) underwent 

treatment with antibiotics before FMT. The SuskindD_2015 cohort 
of patients with Crohn’s disease received rifaximin before FMT 
and exhibits strain sharing patterns similar to datasets with non-
infectious disorders, consistent with previous results showing that 
rifaximin does not lead to substantial shifts in microbiome com-
position43. On the contrary, the BaruchE_2020 melanoma cohort, 
in which patients were pretreated with neomycin and vancomy-
cin, displayed strain sharing characteristics similar to cohorts with 
infectious diseases treated with antibiotics, possibly due to the dis-
ruptive effect of combined oral vancomycin44 and neomycin45 treat-
ment. Antibiotic use may also explain the successful engraftment 
observed in patients with infectious diseases treated with artificial 
microbiome consortia46.

Administration of stool samples from multiple donors could also 
maximize the diversity of engrafted bacteria in the recipient47. For 
the only study available adopting mixed donor feces (GollR_2020), 
we found the second highest median strain engraftment rate among 
the cohorts without antibiotics treatment. We also observed an 
exceptionally high microbial strain sharing between donors and 
post-FMT recipients, comparable with datasets of infectious dis-
eases and pre-FMT antibiotics, in the ZhaoH_2020 cohort, where 
FMT was given for Tourette syndrome (a noninfectious disorder) 
without antibiotic preconditioning. Besides using a mixed admin-
istration route, this cohort included children whose microbiome is 
less resistant to colonization from incoming strains.

Overall, these results show that the fractions of donor-derived 
and retained strains after FMT are influenced by antibiotic admin-
istration and by the presence of an infectious disease, which are 
both hypothesized to reduce microbiome colonization resistance. 
However, since antibiotic treatment and infectious diseases were 
closely entangled variables in our meta-cohort (Supplementary 
Fig. 6), it was not possible to unravel their relative contribution to 
strain engraftment and retention. Nonetheless, as both variables are 
known to lead to a decreased microbial diversity48,49 and, given that 
the substantially lower microbial α-diversity is probably making the 
recipient’s gut more receptive to foreign strains from the donor, we 
hypothesize that these factors may have a combined effect on the 
overall engraftment.

Links between strain engraftment and clinical success of FMT. 
Previous studies suggest that strain engraftment might be associ-
ated with clinical success of FMT, but consolidated evidence is still 
lacking5,6. We thus compared the strain engraftment rates with the 
clinical success of each FMT triad for the datasets with appropri-
ate clinical data available (Supplementary Table 1; Methods). When 
considering single studies, we found that recipients experiencing 
clinical success showed significantly higher engraftment only in the 
VaughnB_2016 cohort (Mann–Whitney U-test, P = 0.039). When 
analyzing all cohorts together, we found an overall positive associa-
tion between strain engraftment rate and clinical response to FMT 
(Fig. 2c) that proved significant according to a blocked permuta-
tion test and a Wilcoxon signed-rank test on medians (P = 0.017 
and P = 0.040, respectively) and borderline significant using a 
random effects model meta-analysis (P = 0.051; Methods). We 
similarly tested for an association between the species-level simi-
larity between post-FMT and donor samples and clinical success, 
which yielded a significantly positive association when evaluating 
species-level microbial abundances with a blocked permutation 
test (Bray–Curtis similarity between post-FMT and donor sam-
ples P = 0.018) but not with the other tests (random effects model 
meta-analysis P = 0.072, Wilcoxon signed-rank test on medians 
P = 0.414; Supplementary Fig. 7), and no significant association 
was found when considering overlap in species presence (Jaccard 
similarity between post-FMT and donor samples; Supplementary  
Fig. 8). The limited total sample size, the binary categoriza-
tion of success of clinical treatments, and the heterogeneity of 
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conditions tested represent limitations in our analyses, but the 
results overall suggest that both higher microbial engraftment 
and, partially, the overall convergence of microbial species abun-
dances between recipient and donor might improve clinical  
success of FMT.

Post-FMT strain engraftment rates are phylum- and species- 
dependent. We then computed species-specific strain engraftment 
rates over all FMT triads for the 211 microbial species for which 
the strain engraftment rate could be estimated with sufficient confi-
dence (that is, that could engraft in at least 15 FMT triads and four 
different datasets; Fig. 3a and Supplementary Table 7; Methods). 
Overall, we found significant differences in engraftment rates across 
bacterial phyla (Kruskal–Wallis test, P = 3 × 10–11), as Bacteroidetes 
and Actinobacteria spp. (26 and 11 species, respectively) displayed 
higher average strain engraftment rates (45 ± 12% and 46 ± 12%, 
respectively; Fig. 3b and Supplementary Table 8) compared with 
Firmicutes and Proteobacteria (23 ± 14% and 29 ± 20%, respec-
tively; post hoc Dunn tests, Q < 0.1; Fig. 3b).

Six Firmicutes SGBs were among the set of the 20 most-engrafting 
species, including two species with only a few isolate genomes 
available (Dialister succinatiphilus, Phascolarctobacterium fae-
cium), two SGBs belonging to hitherto undescribed species 
(Eubacterium SGB6796, Catenibacterium SGB6783), and two 
others belonging to genera without cultured representatives 
(Clostridia SGB3957, Ruminococcaceae SGB15119). Of note, 
D. succinatiphilus—the SGB with the highest likelihood to engraft 
(76%)—and Phascolarctobacterium faecium are both members of 
the Negativicutes class, characterized by a cell-wall composition 
containing lipopolysaccharides, which results in a negative Gram 
stain50. As such, these Firmicutes species may have characteristics 
not completely in line with those of the typical members of this 
phylum, possibly explaining their comparatively high engraftment 
rates. Among the top-engrafting non-Firmicutes species, we found 
several Bacteroidales: Prevotella copri clade A51 (strain engraft-
ment rate = 65%), Bacteroides finegoldii (60%), Bacteroides ster-
coris (58%), Alistipes putredinis (54.2%), Alistipes finegoldii (53%) 
and Phocaeicola massiliensis (62%). Among Actinobacteria, the 

b Antibiotics treatmentP(route of administration) = 0.0093
P(disease, abx) = 0.02

P(amount of feces) = 0.32
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dysbiosis-associated species Eggerthella lenta52 (strain engraftment 
rate = 60%) and two Bifidobacteria (B. bifidum 58%, B. longum 55%) 
also exhibit high engraftment likelihood. In contrast, 19 out of the 20 
least-engrafting species (strain engraftment rate < 6.5%) belonged 
to Firmicutes, of which 16 were members of the Clostridiales 
order. Acidaminoccus intestini, Streptococcus salivarius and four 
other unnamed and uncharacterized Firmicutes species were never 
found to detectably engraft in the FMT recipient despite being fairly 
prevalent in the donor (Fig. 3a and Supplementary Table 8). These 
data suggest that the engraftment potential of microbes differs 
among phyla and species, and that such engraftment likelihoods 
could be considered in future therapeutic protocols when select-
ing fecal donors or designing artificial microbial consortia to use  
instead of FMT.

We also assessed the potential transmission of eukaryotic 
microbes, and found that only Blastocystis was detectable at enough 
coverage to infer transmission (Methods). Most FMT screening 
procedures exclude donors with Blastocystis3, so its prevalence in 
donors is lower than in most ‘Westernized’ populations53–55: we 
detected only five donors positive for Blastocystis in two cohorts 
(BarYosephH_2020, SmillieC_2018). No transmission could be 
inferred (Supplementary Table 9; Methods) while two retention 
events in recipients were detected based on Blastocystis subtyping. 
While Blastocystis is increasingly reported to be linked with favor-
able health conditions53,55,56, it does not seem to play a role in FMT, 
possibly due to donor screening procedures, and transmission via 
FMT was reported as asymptomatic elsewhere57.

Engraftment is linked with predicted bacterial phenotypes. We 
assessed whether the taxonomic differences in strain engraftment 
(Supplementary Table 8) we detected were associated with predicted 
microbial phenotypic properties. The more resistant Gram-negative 
species had a higher engraftment likelihood (Mann–Whitney 
U-test Q = 3 × 10–6; Supplementary Table 10), and only a few 
Gram-positive bacteria were among the most-engrafting species 
(Fig. 3a). Since most Firmicutes are Gram positive, this association 
may be driven by characteristics of the Firmicutes phylum unrelated 
to cell-wall structure. Spore-forming and motile species also tended 
to display reduced engraftment (Mann–Whitney U-test Q = 0.007 
and Q = 0.008, respectively; Fig. 3a and Supplementary Table 8). All 
of the above suggests that species engraftment may be facilitated 
by specific microbial features although more refined knowledge of 
phenotypic traits is needed to infer mechanistic hypotheses under-
lying these associations.

While screening for pathogens is routinely performed as part of 
FMT protocols, the ability of noninfectious but disease-associated 
microbes to engraft remains unknown. Interestingly, microbes 
negatively associated with cardiometabolic health in the PREDICT 
1 study53 tended to engraft more frequently (Spearman’s ρ = 0.36, 
P = 4 × 10–7), possibly due to more aggressive host colonization 
strategies or higher adaptive potential to dysbiotic or inflamed gut 
environments such as those found in FMT recipients. Although 
species prevalence in the gut of healthy individuals did not signifi-
cantly correlate with engraftment across 9,120 gut metagenomic 
samples from 56 public studies (Supplementary Table 11; Spearman 
correlation, P > 0.05), the prevalence of bacteria in nonintestinal 
human body sites was associated with higher engraftment (Mann–
Whitney U-test, P = 8 × 10–4). This suggests that ability to engraft is 
linked to the microbes’ capability of surviving in diverse environ-
ments. Finally, we found no association between the engraftment of 
individual species and clinical success (Fisher’s exact test, Q > 0.1; 
Supplementary Table 8). Together, these results show a remarkable 
variability in the engraftment rates among species in the human 
gut and suggest the possibility of screening donors to minimize the 
engraftment of species associated with unfavorable host conditions 
while promoting those with positive health associations.

Machine learning can predict post-FMT microbial composition. 
Understanding what are the donor and pre-FMT microbiome factors 
dictating the post-FMT microbiome configuration could facilitate 
precision-medicine approaches for targeted microbiome modula-
tions. Since donor strain engraftment accounts only partially for the 
post-FMT microbiome composition, as strains can also persist or 
be acquired from the environment, we developed machine learn-
ing (ML) models to predict the microbiome composition post-FMT 
based on a set of quantitative features. Specifically, we trained 
random forest (RF) models to predict the presence or absence of 
species post-FMT using a total of 16 microbial and host features 
including taxonomy, microbial abundances and α-diversity in 
pre-FMT and donor samples and microbial prevalence in unrelated 
cohorts (Methods). We found that these models predict post-FMT 
species composition with an area under the receiver operating char-
acteristic curve (AUROC) ranging from 0.77 to 0.91 (average = 0.85, 
s.d. = 0.03; Extended Data Fig. 6 and Supplementary Table 12) in a 
fivefold cross-validation (CV) setting (Fig. 4a; Methods).

We next performed an analysis in which we predicted post-FMT 
species composition in a dataset by training the model on all the 
other datasets (leave-one-dataset-out (LODO)). In this setting, 
while AUROC and accuracy values were expectedly lower than 
in the CV setting, AUROC values were above 0.7 in all but 3 of 
the 24 cohorts (average = 0.77, s.d. = 0.05); Extended Data Fig. 7, 
Supplementary Fig. 9 and Supplementary Table 12). Finally, we eval-
uated RF regression models to predict the post-FMT abundance of 
bacterial species (Methods). These models provided estimates of the 
abundance of species in the post-FMT microbiome that were sig-
nificantly correlated with those assessed by microbiome sequencing 
of the post-FMT samples (Spearman correlation 0.47, P < 1×10–16; 
Fig. 4g and Supplementary Fig. 10). We thus conclude that, whereas 
the prediction potential of the post-FMT microbiome composition 
is partially dependent on the cohort, substantial prediction ability is 
maintained across datasets.

Analysis of the importance of each feature highlighted that quan-
titative information on the abundance of the species in the donor 
and in the pre-FMT recipient as well as the overall prevalence are 
more relevant than characteristics such as the α-diversity of donor 
and recipient microbiomes, the β-diversity between donor/recipi-
ent pairs, or disease context (Fig. 4b). Single taxonomic features 
(that is, the species or genus labels) proved not particularly impor-
tant despite differences in strain engraftment rates over different 
clades (Fig. 3a). This observation was, however, likely due to the 
effect of information redundancy and hierarchy on the importance 
estimates as, when we considered all taxonomic levels together, the 
importance of the taxonomy was comparable with that of bacterial 
prevalence or abundance (Supplementary Fig. 11). Further evalu-
ation of species-wise strain engraftment rates as well as predicted 
microbial phenotypes (Fig. 3a and Supplementary Table 8) showed 
no relevant additional increase in prediction ability (mean change 
in CV AUROC upon addition of strain engraftment rate = –0.007, 
s.d. = 0.015; Supplementary Fig. 12; mean change in CV AUROC 
upon addition of predicted phenotypes = 0.005, s.d. = 0.019; 
Supplementary Fig. 13). Overall, we observed that the composition 
of the post-FMT microbiome is generally predictable despite differ-
ences in cohort characteristics and host conditions and the presence 
of a species after the transplant is dictated primarily by the amount 
(or absence) in the donor and in the recipient as well as taxonomy 
and general prevalence.

ML models can pinpoint suitable FMT donors. To better under-
stand to what extent the choice of the donor impacts the post-FMT 
gut microbiome composition, we set up a framework in which we 
substituted either the donor or the pre-FMT recipient of a triad 
with a randomly selected donor or pre-FMT recipient from a dif-
ferent triad of the same dataset and then evaluated the decrease in 
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AUROC upon this exchange. We found, as expected, a decrease 
in predictive performance upon exchange of either donors and 
recipients (Fig. 4c). The performance decrease upon donor 

exchange was particularly pronounced in cohorts of infectious dis-
eases and in patients pretreated with antibiotics (Mann–Whitney 
U-tests, P < 0.001; Extended Data Fig. 8), consistent with a higher  
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fraction of donor strains engrafting in the recipient in these condi-
tions (Fig. 2a). The choice of donor thus has a higher influence on 
the post-FMT microbiome in patients with infectious disease and/
or those that were treated with antibiotics.

Finally, we investigated whether ML models can pinpoint par-
ticularly suitable donor individuals for improving microbiome 
features in recipients based on their individual microbiomes. We 
first evaluated the donor effect in modulating post-FMT species 
richness—a microbiome feature linked with community stability 
and resilience58 and with clinical success in the context of ulcerative 
colitis5. Upon exchange of donors in triads, we found that some 
donors led to a consistent increase in predicted post-FMT richness 
compared with the original donor, whereas others led to a decreased 
predicted post-FMT richness (Fig. 4d). We also found that the 
donors with higher richness were predicted to induce higher rich-
ness in the recipient post-FMT (Fig. 4d and Supplementary Fig. 14), 
and such predictions of post-FMT richness using the real donor 
were much more accurate than the donor’s richness alone (Pearson’s 
r = 0.7 versus r = 0.39, P = 1 × 10–13 versus P = 2 × 10–8; Fig. 4e,f).

We then exploited this framework to pinpoint donors that are 
predicted to maximize the probability of the presence of other 
predefined groups of microbes in the post-FMT samples, such 
as Firmicutes, species found in the oral cavity (Supplementary  
Table 13), or the set of species found positively linked with car-
diometabolic health in the PREDICT 1 study53 (Extended Data  
Fig. 9 and Supplementary Table 14). In all these situations, our 
models proved more accurate in predicting a given trait than using 
the quantitative microbial features of the donor as a direct estimator. 
We finally evaluated a regression model to predict the cumulative 
relative abundance of the same microbial groups, finding that the 
model can predict the cumulative abundance of microbes positively 
linked with cardiometabolic health better than the donor abun-
dances alone (Fig. 4h,i), although the results are variable across dif-
ferent clades (Extended Data Fig. 10). Taken together, these results 
illustrate that our ML framework provides predictive models of the 
composition of the post-FMT microbial communities that might 
be useful for choosing a suitable donor given a specific post-FMT 
microbiome feature of clinical relevance, such as post-FMT micro-
biome richness.

Discussion
In our meta-analysis of metagenomic samples from 24 stud-
ies investigating FMT in different diseases, we built on improved 
strain-level profiling approaches to assess the extent of microbial 
strain engraftment and retention upon FMT in relation to several 
clinical covariates. Donor strain engraftment varied substantially 
across cohorts, and such variability was explained best by mixed 
FMT administration routes (combining upper and lower gastroin-
testinal (GI) tract), by the administration in the recipient of anti-
biotics before FMT (therapeutically or as preconditioning), and by 
the recipient being affected by infectious diseases. These findings 
could explain the discrepancies in the effectiveness of FMT between 
rCDI and chronic or noninfectious disorders4–6. Our results provide 
further support for administering FMT by combined routes and 
including antibiotic preconditioning in FMT working protocols to 
increase donor microbiome engraftment, even though the poten-
tial side effects of antibiotic treatments for noninfectious diseases59 
should be considered.

We found differential strain engraftment likelihoods associated 
with microbial taxonomy and phenotypic properties. Some species 
with immune modulation potential (for example, Bifidobacteria 
spp.), Gram-negative bacteria and some species with proinflamma-
tory potential (for example, Eggerthella lenta) were more likely to 
engraft than most Firmicutes, including putative butyrate-producing 
bacteria. As FMT is performed in patients and not on healthy vol-
unteers, it remains to be elucidated whether the general higher 

engraftment rates of proinflammatory microbes reflect intrinsic 
phenotypic traits that favor transmission and colonization in a new 
environment or rather a better fitness for an inflamed and dysbi-
otic environment. Additionally, the implementation of targeted, 
fine-tuned bacterial consortia as an alternative to traditional FMT 
would avoid the transfer of potentially detrimental bacteria (includ-
ing pathogens that could remain undetected upon screening60), but 
it is still unclear whether such consortia can represent a suitable 
alternative to the complexity of FMT61.

Finally, we developed an ML model to predict the composition 
of the recipient’s microbiome after FMT. Given that we trained this 
model on different datasets and over different diseases, it performed 
well in comparison with a previous, single-cohort study16. The 
model we trained can predict the donors with the highest potential 
to shape the recipient’s microbial composition towards specific fea-
tures such as increased species richness, a decreased proteobacterial 
richness or an increased cumulative abundance of bacteria associ-
ated with favorable cardiometabolic health. Together with a better 
identification of disease- and health-associated microbial features 
for each specific disease, this approach could lead to the develop-
ment of therapeutic FMT strategies based on the selection of the 
recipient-specific optimal donor within a set of available donors, or 
the ad hoc assembly of strain consortia.

In our analysis, we integrated all available metagenomic datas-
ets of FMT in clinical settings, but the small sample size of single 
studies as well as the heterogeneity of diseases and clinical protocols 
still prevent more clear-cut identification of predictors of post-FMT 
microbiome engraftment. Moreover, the link we observed between 
engraftment and clinical success of the FMT treatment needs to be 
substantiated in appropriately sized studies with higher number of 
patients in both outcome arms (for example, clinical failures for 
rCDI are relatively rare) and with more fine-grained evaluation of 
clinical success. Dedicated studies and randomized controlled trials 
are also needed to clarify the influence of protocol-related variables, 
such as antibiotic preconditioning or combined routes of delivery, 
on strain engraftment. Estimates of engraftment rates can also be 
refined both by sequencing samples at higher depth and by devel-
oping computational methods able to profile multiple strains from 
the same species co-colonizing an individual and by better account-
ing for nonbacterial members of the microbiome. These further 
improvements and investigations are needed to effectively translate 
the metagenomic support to FMT protocols into clinical practice.
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Methods
Metagenomic dataset search strategy and selection. We systematically searched 
PubMed, Scopus and ISI Web of Knowledge as of 8 February 2021 for potentially 
eligible studies using the following search string: ((faecal microbiota suspension) 
OR (fecal microbiota suspension) OR (faecal microbiota transplant*) OR (fecal 
microbiota transplant*) OR (faecal microbiota donation) OR (fecal microbiota 
donation) OR (faecal microbiota transfer) OR (fecal microbiota transfer) OR 
(faecal microbiota infusion) OR (fecal microbiota infusion) OR (faecal microbial 
suspension) OR (fecal microbial suspension) OR (faecal microbial transplant*) OR 
(fecal microbial transplant*) OR (faecal microbial donation) OR (fecal microbial 
donation) OR (faecal microbial transfer) OR (fecal microbial transfer) OR (faecal 
microbial infusion) OR (fecal microbial infusion) OR (faecal suspension) OR 
(fecal suspension) OR (faecal transplant*) OR (fecal transplant*) OR (faecal 
donation) OR (fecal donation) OR (faecal transfer) OR (fecal transfer) OR 
(faecal infusion) OR (fecal infusion) OR (bacteriotherapy) OR (stool transplant*) 
OR (stool donation) OR (stool transfer) OR (stool infusion) OR (FMT)) 
AND ((Metagenom*) OR (shotgun) OR (engraft*) OR (whole genom*) OR 
(transkingdom) OR (WGS)). In addition, we manually searched the bibliographies 
of papers of interest to provide additional references. When needed, we contacted 
the authors to obtain additional data, metadata or clarification of study methods.

We considered as eligible all original studies with the following characteristics: 
(1) human subjects of any age were treated with nonautologous FMT; (2) shotgun 
metagenomic analysis of donor feces and of recipient feces (before and after 
treatment) was performed. We excluded studies in which the only therapeutic 
treatment for the disease was based on antibiotics. We further excluded those 
studies using microbial consortium-based transplantation approaches (instead of 
donor stool-based transplantations), those in which fewer than three recipients 
were enrolled and if raw sequencing data or metadata were not available or 
incomplete. In the case of randomized controlled trials that used autologous FMTs 
as placebo, we included only patients treated with nonautologous FMT. If studies 
used stool from mixed donors for FMT (multidonor FMT), they were included 
only if sequencing of multidonor stool batches were available. Finally, we excluded 
animal model studies or nonoriginal studies (reviews, meta-analyses, editorials, 
and so on). The eligibility of each study was assessed independently by two 
reviewers (N.K. and S.P.), and any disagreements were resolved by the opinion of a 
third reviewer (G.I.).

Sequencing data files and metadata were downloaded from public repositories 
as indicated in the original publications. If data were not publicly available, we 
contacted authors asking to provide them through private correspondence.

Metadata extraction and curation. Metadata extraction was carried out 
independently by two reviewers (N.K. and S.P.), using a data collection form. 
Discrepancies between the two reviewers were resolved by the opinion of a third 
investigator (G.I.). The following data were extracted from each study if available: 
author names, publication year, Bioproject Accession code, sequencing depth, 
study location, number of total samples, study disease, number of recipients 
and donors, donor type (that is, whether donor individuals were related to the 
recipient, either family/household members or through friendship or whether 
they were unrelated), use of antibiotics before FMT, characteristics of infused feces 
(grams, volumes, use of frozen/fresh material), routes and number of infusions, 
follow-up, and clinical and microbiological outcomes. Data were not analyzed by 
sex or gender due to lack of this information in most of the published datasets.

Newly collected metagenomic datasets. Three Italian cohorts were newly 
collected as case series and sequenced in the context of this study. A first cohort 
(This_study_Cdiff) was collected between February 2021 and August 2021 at 
the Fondazione Policlinico Gemelli IRCCS in Rome, Italy, and included 16 adult 
subjects with recurrent C. difficile infection and no history of other GI disorders 
or GI surgery. Patients were treated with a single fecal transplant from six different 
donors, and their stool was collected just before FMT and at different timepoints 
(7, 15, 30, 60, 180 and 240 days) after FMT. FMT was performed with frozen fecal 
material. Donor selection and manipulation of fecal material were performed 
following international guidelines3. All patients underwent FMT by colonoscopy, 
after bowel lavage and a 3-day vancomycin regimen, as previously described1.  
A total of 94 stool samples were sequenced. A second cohort (This_study_IBD) 
was collected from May 2017 to October 2017 at the Ospedale Bambino Gesù 
IRCCS in Rome, Italy, and included two pediatric patients with mild-to-moderately 
active IBD despite traditional treatments, without any active GI infection, placed 
central venous catheter or critical illness or comorbidity. They received a single 
FMT (one patient from a related donor, the other from an unrelated donor). 
Stool samples were collected and sequenced at follow-up visits up to 30 days after 
treatment, yielding eight metagenomic samples. A third cohort (This_study_
MDRB), from the Ospedale Pediatrico Bambino Gesù IRCCS in Rome, Italy, 
included, between October 2018 and March 2019, five pediatric patients with large 
bowel colonization with MDRB and either acute leukemia (n = 4 patients) or severe 
combined immunodeficiency (n = 1 subject). Patients underwent single (n = 4 
subjects) or sequential (n = 1 subjects, n = 2 procedures) fecal transplant from one 
of two donors. Stool samples were collected and sequenced at follow-up visits up 
to 30 days after FMT (n = 13 metagenomic samples in total). In both pediatric 

cohorts, FMT was performed as previously described63. Written informed consent 
was obtained from all participants (or the parents of pediatric participants). No 
compensation was provided to the participants. Consistent metadata of all 115 
samples newly collected in this study can be found in Supplementary Table 2.

Samples were collected using a stool collector with a DNA stabilization buffer, 
brought directly by patients to the FMT centers in a refrigerated box within 
6 h from collection, and then stored at –80 °C for up to 36 months before being 
shipped in dry ice to the CIBIO Department (Trento, Italy) for DNA extraction 
and sequencing. DNA extraction was performed using the DNeasy PowerSoil 
Pro Kit (Qiagen) according to the manufacturer’s procedures. No human DNA 
sequence depletion or enrichment of microbial or viral DNA was performed. DNA 
concentration was measured with Qubit (Thermo Fisher Scientific) and DNA was 
then stored at –20 °C. Sequencing libraries were prepared using the Illumina DNA 
Prep (M) Tagmentation kit (Illumina) following the manufacturer’s guidelines. 
Sequencing was performed on the Illumina NovaSeq 6000 platform at a target 
sequencing depth of 7.5 Gbp following the manufacturer’s protocols.

Newly generated shotgun metagenomic sequences were preprocessed and 
quality controlled using the pipeline available at https://github.com/SegataLab/
preprocessing and KneadData within bioBakery v.3 (ref. 23). Shortly, reads 
were quality controlled and those of low quality (average quality score <Q20), 
fragmented (<75 bp) and with more than two ambiguous nucleotides were 
removed with Trim Galore (v.0.6.6). Contaminant and host DNA was identified 
with Bowtie2 (v.2.3.4.3)64 using the parameter ‘-sensitive-local,’ allowing confident 
removal of the phiX 174 Illumina spike-in and human reads (hg19 human genome 
release). Remaining high-quality reads were sorted and split to create forward, 
reverse and unpaired reads output files for each metagenome. Average sequencing 
depth after preprocessing was 7.3 s.d. 4.9 Gbp. Sequencing depth of each sample 
can be found in Supplementary Table 2.

Definition of clinical response across studies. To evaluate the association between 
microbial engraftment and clinical success, we identified all studies that expressed 
clinical outcomes as binary variables, for which single individual metadata were 
available or could be retrieved from the publication via manual curation, and 
for which both the clinically successful and the unsuccessful groups had at least 
one FMT triad. Ten published studies (AggarwalaV_2021, BarYoseph_2020, 
BaruchE_2020, DavarD_2021, GollR_2020, SmillieC_2018, SuskindD_2015, 
VaughnB_2016, ZhaoH_2020, IaniroG_2020) and the three new cohorts (This_
Study_Cdiff, This_Study_IBD, This_Study_MDRB) were included. Clinical success 
was defined as C. difficile infection cure in three studies (AggarwalaV_2021, 
SmillieC_2018, This_Study_Cdiff), as eradication of MDRB in two studies 
(BarYoseph_2020, This_Study_MDRB), as objective tumor regression by imaging 
according to iRECIST criteria65 in two studies (BaruchE_2020, DavarD_2021), as 
reduction by more than 75 points in the IBS-Severity Scoring System (IBS-SSS) in 
GollR_2020, as resolution of diarrhea in IaniroG_2020, as reduction by >25% in 
the Yale Global Tic Severity Scale (YGTSS-TTS) and reduction by more than three 
in the Harvey-Bradshaw Index (HBI) change without an increase in IBD-related 
medications in VaughnB_2016, as clinical remission expressed as Pediatric Crohn’s 
Disease Activity Index (PCDAI) of less than ten in SuskindD_2015, and as clinical 
remission expressed as Pediatric Ulcerative Colitis Activity Index (PUCAI) of less 
than ten in This_Study_IBD.

Building the expanded SGB database. SGBs are clusters of microbial genomes and 
MAGs defined to have no more than 5% pairwise genetic divergence25. SGBs can 
contain taxonomically labeled microbial genomes from isolate sequencing (kSGBs) 
or can lack taxonomic contextualization from isolate sequencing (uSGBs; that is, 
SGBs with no cultured isolate). In this work, we first extended the SGB database 
and then employed it to detect and profile the taxa present in metagenomes 
belonging to any kSGB or uSGB at species- and strain-level resolution.

The custom extended database was built starting from the 154,723 MAGs 
and 80,990 reference isolate genomes from Pasolli et al.25 and further expanded 
using the same approach with 616,805 MAGs from different human body sites, 
animal hosts and other environments, together with 155,767 reference genomes 
in the National Center for Biotechnology Information GenBank database66 
available as of November 2020. MAGs were assembled from metagenomes 
by applying metaSPAdes67 (v.3.10.1) or MEGAHIT68 (v.1.1.1) to each sample 
separately as reported in Pasolli et al.25. Obtained assembled contigs longer than 
1,500 nucleotides were binned into MAGs with MetaBAT2 (ref. 69) (v.2.12.1). 
We executed CheckM (v.1.1.4)70 on the 1,008,148 genomes, filtering those with 
completeness below 50% or contamination above 5% to ensure high quality. Next, 
we minimized the redundancy among genomes by computing Mash distances71 on 
the quality-controlled sequences, and dereplicating sequences at 99.99% genetic 
identity. A total of 729,195 genomes (560,076 MAGs (Supplementary Table 15) 
and 169,119 reference genomes) were kept in the extended database used for 
species- and strain-level profiling, thus leveraging reference-based profiling with 
information provided by metagenome assembly. Reference isolate genomes and 
MAGs were then clustered into SGBs spanning at least 5% genetic diversity, and 
SGBs to genus-level genome bins (GGBs; 15% genetic diversity) and family-level 
genome bins (FGBs; 30% genetic diversity), following the procedure described in 
Pasolli et al.25. ‘phylophlan_metagenomic’—a subroutine of PhyloPhlAn 372 that 

NAture MeDICINe | www.nature.com/naturemedicine

https://github.com/SegataLab/preprocessing
https://github.com/SegataLab/preprocessing
http://www.nature.com/naturemedicine


ArticlesNature MediciNe

applies Mash71 to estimate the whole-genome average nucleotide identity among 
genomes—was used to assign MAGs to SGBs. Reference genomes and MAGs for 
which no SGB with at least 5% average genetic distance was present in the database 
were assigned to new SGBs based on the average linkage hierarchical clustering 
(with the dendrogram cut at 5% genetic distance). Similarly, when no GGBs or 
FGBs below the genetic distance threshold existed, SGBs were assigned to new 
GGBs and FGBs following the same procedure.

Prokka (v.1.12 and v.1.13)73 was used to annotate the open reading frames of 
all reference genomes and MAGs. Coding sequences were assigned to a UniRef90 
cluster74 by performing a Diamond search (v.0.9.24)75 of the coding sequences on 
the UniRef90 database (v.201906) and assigning a UniRef90 identifier when the 
mean sequence identity to the centroid sequence was greater than 90% and covered 
more than 80% of the centroid sequence. Sequences that could not be assigned 
to any UniRef90 cluster following this procedure were de novo clustered with 
MMseqs2 (ref. 76) to SGBs following the Uniclust90 criteria77.

Definition of kSGBs and uSGBs and taxonomic assignment. SGBs containing 
at least one reference genome (kSGBs) were assigned the same species-level 
taxonomy of the reference genomes included in the kSGB following a majority 
rule. SGBs containing no reference genomes (uSGBs) were given the taxonomic 
annotation of the corresponding GGB (up to the genus level) if this included 
reference genomes, and of the FGB (up to the family level) if that included 
reference genomes. Alternatively, if no reference genomes were contained in the 
FGB, a phylum-level taxonomic label was assigned based on the majority rule of 
up to 100 closest reference genomes to the MAGs in the SGB as determined by 
‘phylophlan_metagenomic’. Taxonomic assignment of SGBs profiled in this study 
can be found in Supplementary Table 3.

Species-level profiling of metagenomic samples. Species-level profiling was 
performed on samples sequenced to a depth higher than 1 Gbp (n = 1,419; 100 
samples being excluded from downstream analyses) using MetaPhlAn 4 (ref. 23,39) 
with default parameters and the custom extended SGB database. uSGBs with fewer 
than five MAGs were discarded, as there is a higher risk of them being the result 
of assembly artifacts or chimeric sequences. Next, SGB core genes were defined 
as ORFs in a UniRef90 family or in a de novo clustered gene family (based on the 
Uniclust90 clustering procedure77) that were detected in at least half of the genomes 
of the SGB. Core genes were further filtered by selecting the highest threshold 
that allowed obtaining at least 800 core genes. The obtained core genes were then 
split into fragments of 150 nt, and such fragments were then aligned against the 
genomes of all SGBs using Bowtie2 (v.2.3.5.1; –sensitive option)64. Marker genes of 
a SGB were defined as core genes whose fragments were found in less than 1% of 
the genomes of any other SGB. When fewer than ten marker genes were found for 
a SGB, conflicts were defined as occurrences of more than 200 of its core genes in 
more than 1% of the genomes of another SGB. All conflicts for each SGB were then 
retrieved to generate conflict graphs. Conflict graphs were processed iteratively, 
and SGBs were merged for each conflict to both minimize the number of merged 
SGBs and maximize the number of markers. Finally, a maximum of 200 marker 
genes were selected for each SGB, prioritizing first their uniqueness and next 
the larger sizes. SGBs with fewer than ten markers were discarded at this point. 
Merged SGBs (SGB_group) profiled in this study can be found in Supplementary 
Table 3. The resulting 5.1 M marker genes (average: 189 ± 34.25 s.d. marker genes/
SGB) were used as a new reference database for MetaPhlAn 4 (species-level 
profiling) and StrainPhlAn 4 (strain-level profiling). The presence of Blastocystis 
and the identification of its different subtypes was inferred with a mapping-based 
computational pipeline described elsewhere55.

Strain-level profiling of metagenomic samples. Strain profiling was performed 
with a modified version of StrainPhlAn 3 (ref. 23) using the custom SGB marker 
database described above that has been released as StrainPhlAn 439. We modified 
the StrainPhlAn code to change the sample and marker filtering behavior to allow 
for profiling more samples and SGBs. A sample was kept as long as it had at least 
20 markers (parameter–sample_with_n_markers) and a marker was kept as long as 
it was present in 50% of the samples (parameter–marker_in_n_samples). After this 
first filtering, we retained samples with at least ten markers (parameter–sample_
with_n_markers_after_filt). All 2,576 SGBs profiled by MetaPhlAn were initially 
considered for the strain-level profiling.

To improve accuracy of strain sharing detection and to more confidently define 
strain identity, we additionally considered samples from curatedMetagenomicData 
(cMD) R package78 (v.3.15). We included 4,443 human gut metagenomic samples 
from 962 individuals older than 6 years from ‘Westernized’ populations (as 
defined in cMD) that were sampled longitudinally, obtained from 18 datasets 
(Supplementary Table 11). For each subject and each SGB, two samples being 
at most 6 months apart were selected. When more than two timepoints close in 
time were available, we selected the pair that maximized the lower estimated 
coverage of the SGB among the two samples, that is, maximized their chance to 
pass the filtering steps in StrainPhlAn. In case of ties, we took those with higher 
coverage. Coverage of an SGB in a sample was estimated as [sample sequencing 
depth] × [relative abundance of the SGB] / [estimated genome length], with 
estimated genome length being extracted from the MetaPhlAn enlarged database 

described above. For kSGBs this is determined using only the genome lengths of 
the reference genomes in the kSGB, whereas for uSGBs 7% is added to the average 
genome length (estimated to be the average difference between the genome sizes of 
reference genomes and MAGs within the same SGB).

We included in the strain analysis samples as primary (that is, those that are 
used to select markers, parameter–samples) if they had an estimated coverage of 
at least 2X that of a given SGB genome, otherwise they were added as secondary 
samples (that is, those that are added only after the markers are selected with 
the primary samples, parameter–secondary_samples). In total, 1,033 SGBs that 
were detected in at least 20 primary samples were profiled at the strain level. To 
exclude strains likely coming from food sources, we included 216 MAGs in 19 
SGBs (Supplementary Table 16) coming from food samples79 and used them in 
the StrainPhlAn profiling with the –secondary_references parameters. Samples 
that had StrainPhlAn mutation rates less than 0.0015 to any food MAG were 
discarded following the same procedure as in (Valles-Colomer et al., manuscript 
in preparation). SGBs in which more than 20% of the samples would be discarded 
using this criterion—constituting in large part of strains regularly found in food—
were fully excluded (n = 3 SGBs: Bifidobacterium animalis SGB17278, Lactobacillus 
acidophilus SGB7044, Streptococcus thermophilus SGB8002). Additionally, we 
excluded 7 SGBs for which the marker genes alignment length was shorter than 
1,000 nucleotides, and another 11 SGBs for which StrainPhlAn was not successful 
in building a phylogenetic tree.

Inference of strain transmission events. We obtained phylogenetic distances 
between strains as their leaf-to-leaf branch lengths along the trees (that is, patristic 
distances) produced by StrainPhlAn (built on marker genes alignments, retaining 
positions with at least 1% variability), normalized by dividing them by the median 
phylogenetic distance. As no consensus definition of strain is currently available, 
to infer strain identity and supported by the clear bimodal distribution of patristic 
distances of strains from the same individual with the highest peak in 0 (ref. 22), 
we defined and applied operational species-specific definitions by identifying 
the threshold that optimally separated phylogenetic distance distributions of 
strains of a given species in the same individual sampled at two timepoints (same 
strain), to that in unrelated individuals (different strains) whenever enough data 
were available. For all strain-level profiled SGBs, we determined the phylogenetic 
distance threshold that best separates strains from the same subject (different 
post-FMT timepoints of the same recipient or different samples of the same donor 
subject or different additional longitudinal samples of the same subject, always less 
than 6 months apart) from those of unrelated subjects with no possibility of direct 
transmission (subjects in different datasets) in the datasets we used in this study. 
For SGBs for which at least 50 same-individual and 50 unrelated comparisons were 
available, we determined the threshold that maximizes Youden’s index (defined 
as sensitivity + specificity – 1). If the resulting calculated threshold was greater 
than the fifth percentile of the distribution of subjects in different datasets, we 
adjusted the threshold to the 5th percentile as a bound on the false discovery 
rate (FDR). For SGBs for which fewer than 50 same-individual comparisons but 
at least 50 unrelated comparisons were available (in which optimal thresholds 
cannot reliably be estimated), we used the third percentile of the interindividual 
phylogenetic distances of subjects in different datasets, which corresponded to the 
median of all the calculated percentiles in (Valles-Colomer et al., manuscript in 
preparation). SGBs for which fewer than 50 unrelated comparisons were available 
(n = 17) were discarded. The SGB-specific phylogenetic distance thresholds for all 
995 strain-level analyzed SGBs can be found in Supplementary Table 3. Finally, we 
defined strain identity for pairs of strains when their pairwise genetic distance fell 
below the SGB-specific thresholds.

Sample filtering. Strain-level profiling allows identification of mislabeled 
samples80. We identified and excluded post-FMT samples (n = 21 out of 1,419) that 
did not share any strain with neither their corresponding pre-FMT sample nor the 
donor’s sample—something highly unexpected due to the high temporal stability 
of the gut microbiome22,23,36,81 and thus potential cases of sample mislabeling. We 
also identified outliers with more than 20 shared strains between pre-FMT and 
donor samples while being from two supposedly unrelated individuals (n = 2 cases; 
Supplementary Fig. 15), most probably not representing true recipient–donor 
pairs. The third outlier with more than 20 shared strains was coming from a dataset 
using both related and unrelated donors, but the Bray–Curtis dissimilarity between 
the donor and pre-FMT samples was close to zero (Bray–Curtis = 0.019) suggesting 
they are the same biological sample and confirming the mislabeling. Finally, we 
excluded the ZouM_2019 cohort from the analysis because strain-sharing sample 
clustering was heavily discordant from the grouping of FMT triads according 
to the metadata (Extended Data Fig. 1) and ZouM_2019 was the only dataset 
with a median of only one strain shared between post-FMT and donor samples 
(Supplementary Fig. 16), further suggesting systematic errors in the metadata.

Inferring donor subject grouping. In three cohorts (BarYosephH_2020, 
DammanC_2015 and LeoS_2020) some donors provided stool material to multiple 
recipients, but we could not solve which donor samples were transferred to which 
patients, either from the metadata or through private correspondence with the 
authors. Therefore, we inferred grouping of donor samples into subjects using 
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strain sharing: donor samples sharing more than 15 strains were grouped into 
one subject. This threshold allows confident matching of samples from the same 
subject, since unrelated samples very rarely share more than five strains (0.08% 
of pairs of samples), whereas longitudinal post-FMT samples frequently share 
more than 15 (56.8% of pairs of samples; Supplementary Fig. 17) as also reported 
elsewhere22. Indeed, in these three datasets samples from the same assigned donor 
always shared at least 15 strains, while this was never observed among samples 
from different donor individuals.

Inferring donor–recipient matching. Donor–recipient matching was 
unavailable for DammanC_2015 and we were unable to obtain it through private 
correspondence with the authors. However, as at least one post-FMT sample of 
a recipient always shared eight or more strains with one donor subject, while no 
post-FMT samples of the same recipient shared eight or more strains with any 
other donor subject (Supplementary Fig. 18), we used the criterion of sharing eight 
or more strains to infer donor–recipient matching in the dataset.

Definition of FMT triads. We considered only complete FMT triads, that is, sets 
of at least one sample from the recipient pre-FMT, at least one from the donor, 
and at least one from the recipient post-FMT. In case of multiple sequential FMT 
transplants, we included only the first one. In case of multiple pre-FMT samples, 
we used the one collected closest to the FMT. When multiple donor samples 
were available and there was no indication of which one was used, we picked one 
randomly since donor samples from the same individual are reasonably stable in 
terms of species-level composition and strain identity8,22 (Supplementary  
Fig. 19). Finally, when multiple post-FMT samples were available, we picked the 
one closest to 30 days post-FMT, which is the value that minimizes the sum of 
absolute deviations of timepoints (Supplementary Fig. 1). Where there was more 
than one round of treatment, we considered only those post-FMT samples that 
were taken before the second treatment round.

Assessing strain sharing, retention and engraftment. We defined strain-sharing 
rates as the total number of shared strains between two samples divided by the 
number of species profiled by StrainPhlAn in common between the two samples. 
To quantify the fraction of post-FMT strains that were already present pre-FMT 
or that are shared with the donor, we defined the fraction of retained strains as 
the fraction of post-FMT strains shared with pre-FMT (shared strains between 
post-FMT and pre-FMT divided by the number of strains profiled at post-FMT) 
and the fraction of donor strains as the fraction of post-FMT strains shared with 
the donor (shared strains between post-FMT and donor divided by the number of 
strains profiled at post-FMT).

Next, we determined the number of engrafted strains as the (absolute) 
number of shared strains between post-FMT and the donor excluding the strains 
shared between pre-FMT and the donor samples. In this context we defined 
four categories that describe the relationship between donor- and recipient 
individuals (Fig. 1e). ‘Related’: individuals are genetically related or cohabiting/
friends; ‘unrelated’: individuals are neither genetically related nor cohabiting/
friends as stated in the study manuscript, recruited through public advertisement 
or hospital’s cohorts; ‘mixed’: only some of the individuals are genetically related or 
cohabiting/friends; ‘unknown’: the relation of donors to recipients was not stated 
in the manuscript or metadata. The number of strains that could engraft is defined 
as the number of cases in which StrainPhlAn can profile the strain in the donor 
sample while excluding both the shared strains between pre-FMT and donor and 
the cases where the species is present in the post-FMT, but no strain is profiled by 
StrainPhlAn (as in these cases it is not possible to determine the strain identity). 
Finally the strain engraftment rate was defined as the number of engrafted strains 
divided by the number of strains that could engraft. This measure was computed 
for each FMT triad (by aggregating over species) and also for each species (by 
aggregating over FMT triads). In the latter case, only species with at least 15 FMT 
triads from at least four datasets in which the strain could engraft were included in 
the analyses.

Visualization and ordinations of strain sharing in cohorts. To visualize strain 
sharing in datasets, we computed networks as well as t-SNE plots based on the 
number of shared strains between pairs of samples. Unsupervised networks were 
visualized using the igraph package in R (v.1.2.6)82 with the Fruchterman–Reingold 
layout algorithm with squared edge weights, with edges being the number of 
shared strains and nodes representing samples. Only edges with more than one 
shared strain are shown. The t-SNE plot was generated using the scikit-learn 
package83 in Python (v.1.0.2) with perplexity set to 20 and remaining parameters 
left default.

Comparing strain- and species-level β-diversities for FMT triad clustering. To 
compare how well strain- and species-level information allow clustering of samples 
from the same FMT triads, we performed K-medoids clustering with partitioning 
around medoids (PAM) algorithm implemented in scikit-learn-extra Python 
package (v.0.2.0) using strain sharing rates dissimilarities (defined as 1 – strain 
sharing rate) as compared with Aitchison distance and Bray–Curtis dissimilarity 
(on untransformed data, after arcsine square root transformation and after logit 

transformation). In case of Aitchison distance, the zeros were replaced by the per 
taxon minimal nonzero abundance and in case of logit transformation the zeros 
were replaced by the half of the minimal nonzero abundance globally. Clustering 
quality was assessed using the clustering purity, which is defined as the fraction 
of samples that belong to the majority class in their respective cluster. When 
calculating the purity of FMT triads with shared donor samples (donor samples 
having been administered to several recipients), we treated the single sample as 
multiple samples, each belonging to one of the associated FMT triads. In this way 
the association was considered pure if the donor sample was clustered with any of 
the triads it belongs to.

Prevalence of the SGBs across different human body sites. We profiled 9,900 
healthy human microbiome samples from 59 datasets spanning different body 
sites (airways, gastrointestinal tract, oral, skin and urogenital tract; Supplementary 
Table 11) using MetaPhlAn 4 (ref. 23,39) with default parameters and the custom 
SGB database (see above). Only individuals older than 3 years and from cohorts 
involving industrialized nonrural populations (defined as ‘Westernized’ in cMD78) 
were considered. Age, lifestyle and disease status were considered as reported  
in cMD78.

Annotation of SGB phenotypic traits. SGB phenotypes were predicted using 
Traitar (v.1.1.12)62 on the genes present in 50% of genomes available for each 
SGB in the custom SGB database. Only annotations for which the phypat and the 
phypat + PGL classifiers predictions were in agreement were used.

Statistical analysis. Total strain-sharing variance explained by FMT triad 
membership (Fig. 1a) was assessed by PERMANOVA on strain-sharing-based 
dissimilarities using the adonis function in the vegan package in R (v.2.5–7)84. 
Dissimilarities were computed within each dataset as 1 – (n/M), where n is the 
number of shared strains and M is the maximum of the number of shared strains.

To compare differences between median strain sharing or engraftment 
measures (Figs. 1e and 2a,b) in two groups of datasets against the null distribution, 
permutation tests were applied by randomly permuting the assignments between 
labels and dataset identifiers 9,999 times.

LOESS fit in Fig. 4d was computed using the geom_smooth function from the 
ggplot2 (v.3.3.5) in R with standard parameters.

To compare median strain-sharing rates between triads in which the FMT 
procedure was clinically defined as ‘successful’ and those in which was clinically 
‘unsuccessful’ (see above) (Fig. 2c), we applied four statistical tests. First, we used 
a permutation test applied by randomly permuting the success labels within each 
dataset 9,999 times. Second, we fitted a linear mixed model predicting strain 
engraftment rate with the clinical success as an indicator variable and the dataset 
identifier as a random effect using the R package lme4 (ref. 85); the significance 
was assessed by performing a likelihood-ratio test against a null model without 
the success indicator variable. Third, we computed median strain sharing rates 
of successful and unsuccessful groups within each dataset and compared the 
medians of the successful group with the unsuccessful groups with the Wilcoxon 
signed-rank test as implemented in the SciPy package86 (v.1.7.3) in Python. 
Correction for multiple testing (Benjamini–Hochberg procedure, Q) was applied 
when appropriate with significance defined at Q < 0.1.

Multivariate analysis. A multivariate analysis was performed to assess 
associations between strain engraftment rates and clinical/nonclinical variables. 
We included both covariates describing the clinical process, the recipient’s and 
donor’s microbiomes, and experimental variables consistently available across 
studies: antibiotics intake (that is, intake close to FMT treatment, intake as a 
FMT pretreatment or no antibiotic intake); whether the FMT was done to treat 
an infectious or noninfectious disease; administration of fresh or frozen stool; 
the amount of feces administered (in grams); the route of FMT administration 
categorized in ‘upper GI’ routes (capsules, enteroscopy, nasogastric tube, 
nasoduodenal tube, upper endoscopy, PEG), ‘lower GI’ routes (colonoscopy) and 
‘mixed’ routes (FMT protocols utilizing both upper and lower routes for the same 
recipient); recipient’s age (in years); recipient’s and donor’s α-diversity (Shannon 
index on species-level abundances); the Bray–Curtis β-diversity and strain-sharing 
rate between recipient pre-FMT and donor; usage of bead-beating steps for DNA 
extraction; broad geographic regions based on the recipient’s lifestyle and diet 
(Mediterranean consisting of Israel, Italy and France87; North America consisting of 
the United States and Canada; Central and Northern Europe consisting of Norway, 
the Netherlands and Germany; and China). Categorical variables were converted 
to sets of binary variables, one per each category level (one-hot encoding). All 
variables were standardized by subtracting the mean and dividing by the s.d.

Since many variables in the analysis are correlated with each other 
(Supplementary Fig. 6), we performed partial least squares decomposition, 
which is well-suited for multicollinear data, where the standard linear models 
are inappropriate. We used the PLSRegression class with parameter scale=False 
from the scikit-learn83 Python library (v.1.0.2). The coefficients for each variable 
composing each component were retrieved through the x_weights_ parameter 
and the transformed data matrix through the x_scores_ variable returned from 
the fit_transform method. We regressed each component separately on the 
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strain engraftment rate with ordinary least squares. The first two components 
were explaining the most the strain engraftment rate and were the only ones 
significantly associated with it (R2 = 0.187, Q = 6 × 10–10 and R2 = 0.046, Q = 3.8 × 10–

3 for the first and second component, respectively; Extended Data Fig. 5). We 
assessed the association of the variables with the components by hierarchical 
bootstrap, that is, by resampling the datasets and for each dataset resampling the 
FMT triads and the associated variables. By resampling the data matrix this way 
and repeating the PLS decomposition (9,999 iterations) we obtained an estimate of 
empirical distribution for each weight coefficient.

Machine learning. We used an ML modeling approach to predict the taxonomic 
composition (presence/absence and relative abundance) of the post-FMT 
microbiome. To this end, we first organized the data such that each datapoint 
represented a species in a specific FMT triad. We did not consider species 
absent in both recipient pre-FMT and donor. As features associated with each 
datapoint we used information specific to each FMT triad (Jaccard distances and 
Bray–Curtis dissimilarities between pre-FMT and donor samples as estimates 
for their microbiome compositional similarity, ratio of pre-FMT and donor 
species abundances, time between FMT and sample collection), species relative 
abundances for all samples (abundances in the post-FMT were treated as the 
dependent variables), and Shannon entropy values for pre-FMT and donor 
samples, information about species (taxonomy, prevalence in an unrelated set 
of metagenomic samples23) and cohort-specific information (dataset, disease 
infectivity).

We trained RF models88 both in a LODO as well as in a fivefold CV fashion. In 
the CV setting, we repeated the entire training/evaluation with five resamplings 
and averaged the prediction probabilities. To avoid overestimating model 
performance, we omitted species that were absent in both pre-FMT and donor 
samples in the evaluation step since those are easy to predict (Fig. 4a,b). Training 
and evaluation of RF models was done using the classif.ranger learner (for the 
presence/absence classifier) and regr.ranger (for the relative abundance regressor) 
from the mlr3 package (v.0.10) in R89 with parameter importance = ‘permutation’. 
We used the unbiased AUROC metric to evaluate the performance of the presence/
absence classifier. Feature importance values were obtained directly from the 
trained RF regression model. Reported AUROC values were calculated per FMT 
triad and correspond to the AUROC of the predicted post-FMT species against the 
species actually detected in the post-FMT sample.

The pre-FMT/donor exchange simulations are based on the idea that we can 
exchange the real pre-FMT/donor individuals with others (from different FMT 
triads) in silico and then predict and analyze the post-FMT microbiome of these 
artificial triads. (Fig. 4c,d). Here, we chose random pre-FMT/donor samples from 
a different FMT triad of the same dataset and exchanged all associated features. We 
ensured that donor samples came from a different FMT triad and from a different 
donor individual (since some donor individuals donated stool to more than one 
FMT triad). In these experiments, we only considered datasets with at least three 
donors.

To evaluate the ability of the presence/absence classifier to predict continuous 
post-FMT microbiome traits (Fig. 4e,f,h,i), we computed the predicted species 
richness of certain groups of bacteria (richness, proteobacterial richness, 
Firmicutes richness, Bacteroidetes richness, PREDICT 1 species richness 
(Supplementary Table 14), richness of oral bacterial (Supplementary Table 13). We 
summed up raw prediction probabilities to estimate richness values. Similarly, for 
the evaluation of the abundance regressor, we computed the predicted cumulative 
abundance of the same groups of bacteria described above.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Newly generated shotgun metagenomics sequencing data are available at the 
European Nucleotide Archive under accession number PRJEB47909. Metadata are 
available in Supplementary Table 2 and in curatedMetagenomicData78.

Code availability
StrainPhlAn 4 was used for strain-sharing inference, and is available at https://
github.com/biobakery/MetaPhlAn. The code to reproduce the ML results can be 
found under the following link: http://segatalab.cibio.unitn.it/data/FMT_meta.
html. All analyses were performed using open-source software.
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Extended Data Fig. 1 | Strain sharing networks for the datasets included in this study not shown in Fig. 1A. Each node corresponds to a sample and is 
colored by its role in FMT triads (recipient pre-FMT sample, recipient post-FMT sample, and donor's sample). Edge opacity is proportional to the number 
of shared strains between two samples (Methods) and only edges corresponding to at least 2 shared strains are shown. The structure of the networks 
illustrates how FMT triads tend to cluster together but with different clustering characteristics across cohorts.
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Extended Data Fig. 2 | the purity of K-medoids clustering with varying K shows that strain sharing rate outperforms β-diversity measures in clustering 
by donor associations and by FMt triads. In clustering by cohorts for the low number of clusters it gets outperformed by Aitchison distance, but catches 
up as the K increases.
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Extended Data Fig. 3 | PCoA ordination on strain sharing rate distances and variance explained by number of components, suggesting that two 
dimensions are not sufficient to linearly separate the clusters induced by dataset or donor batch effects. Unique combinations of color and shape 
correspond to samples associated with one donor subject.
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Extended Data Fig. 4 | Strain sharing rates between donor and post-FMt samples is non-significantly higher in datasets using related or a mixture of 
related and unrelated donors compared to those using only unrelated donors (related or mixed vs unrelated, permutation test, p=0.383). Box plots 
are defined as follows: the center line and upper and lower limit of the box correspond to the median, upper quartile and lower quartile respectively. The 
whiskers are defined by that data point that is at most 1.5 times higher than the upper quartile (upper whisker) or 1.5 times lower than the lower quartile 
(lower whisker).
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Extended Data Fig. 5 | Partial least squares regression of various variables of interest against strain engraftment rate. A) Most of the explained variance 
in strain engraftment rate is covered by the first two components. B) The weights of the variables in the first two components.
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Extended Data Fig. 6 | Random forest classifier prediction accuracies of post-FMT species presence/absence (CV).
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Extended Data Fig. 7 | Random forest classifier prediction accuracies of post-FMT species presence/absence (LODO).
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Extended Data Fig. 8 | Boxplots of the difference in AuC upon simulated donor exchange. Mann-Whitney U-test two-tailed p<2e-16 for both infectious 
vs. non-infectious disease and antibiotics vs. no antibiotics comparisons. Box plots are defined as follows: the center line and upper and lower limit of the 
box correspond to the median, upper quartile and lower quartile respectively. The whiskers are defined by that data point that is at most 1.5 times higher 
than the upper quartile (upper whisker) or 1.5 times lower than the lower quartile (lower whisker).
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Extended Data Fig. 9 | Comparisons of the predicted total species richness of bacterial groups in post-FMt samples. Predictions on the y-axis come 
from the RF classifier, predictions on the x-axis correspond to the cumulative richness in donor samples.
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Extended Data Fig. 10 | Comparisons of the predicted cumulative abundance of bacterial groups in post-FMt samples. Predictions on the y-axis come 
from the RF regressor, predictions on the x-axis correspond to the cumulative abundance in donor samples.
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