Background: Gut microbiota may play a role in the natural history of cow’s milk allergy.

Objective: We sought to examine the association between early-life gut microbiota and the resolution of cow’s milk allergy.

Methods: We studied 226 children with milk allergy who were enrolled at infancy in the Consortium of Food Allergy observational study of food allergy. Fecal samples were collected at age 3 to 16 months, and the children were followed longitudinally with clinical evaluation, milk-specific IgE levels, and milk skin prick test performed at enrollment, 6 months, 12 months, and yearly thereafter up until age 8 years. Gut microbiome was profiled by 16s rRNA sequencing and microbiome analyses performed using Quantitative Insights into Microbial Ecology (QIIME), Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), and Statistical Analysis of Metagenomic Profiles (STAMP).

Results: Milk allergy resolved by age 8 years in 128 (56.6%) of the 226 children. Gut microbiome composition at age 3 to 6 months was associated with milk allergy resolution by age 8 years (PERMANOVA \(P = .047 \)), with enrichment of Clostridia and Firmicutes in the infant gut microbiome of subjects whose milk allergy resolved. Metagenome functional prediction supported decreased fatty acid metabolism in the gut microbiome of subjects whose milk allergy resolved (\(\eta^2 = 0.43; \) ANOVA \(P = .034 \)).

Conclusions: Early infancy is a window during which gut microbiota may shape food allergy outcomes in childhood. Bacterial taxa within Clostridia and Firmicutes could be studied as probiotic candidates for milk allergy therapy. (J Allergy Clin Immunol 2016;138:1122-30.)

Key words: Cow’s milk allergy, microbiome, microbiota, Clostridia, Firmicutes, Bacteroidetes, metagenome, fatty acid, food allergy, 16s rRNA sequencing

Early-life gut microbiome composition and milk allergy resolution

Supinda Bunyavanich, MD, MPH, a,b Nan Shen, MS, a Alexander Grishin, PhD, b Robert Wood, MD, c Wesley Burks, MD, d Peter Dawson, PhD, e Stacie M. Jones, MD, f Donald Y. M. Leung, MD, PhD, g Hugh Sampson, MD, m Scott Sicherer, MD, m and Jose C. Clemente, PhD a,b

New York, NY, Baltimore and Rockville, Md, Chapel Hill, NC, Little Rock, Ark, and Denver, Colo

From the Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York; the Division of Pediatric Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York; the Department of Pediatrics, Johns Hopkins University, Baltimore; the Department of Pediatrics, University of North Carolina, Chapel Hill; the Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children’s Hospital, Little Rock; the Department of Pediatrics, National Jewish Health, Denver; and the Department of Medicine, Division of Clinical Immunology and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York.

This study was supported by the National Institutes of Health (K08AI093538, R01AI118833, U19AI066738 and U01AI066560), SUCCESS, Crohn’s and Colitis Foundation of America (CCFA #362048), and the Department of Scientific Computing at the Icahn School of Medicine at Mount Sinai. The project was also supported by grants U11 TR-000154 (National Jewish), U11 TR-000067 (Mount Sinai), U11 TR-000039 (Arkansas), U11 TR-000083 (U North Carolina) and U11 TR-000424 (Johns Hopkins) from the National Center for Research Resources (NCRR), a component of the National Institutes of Health.

Disclosure of potential conflict of interest: S. Bunyavanich has received a grant from the National Institutes of Health (NIH)/National Institute of Allergy and Infectious Diseases. A. Grishin has received a grant from the NIH/National Institute of Allergy and Infectious Diseases and has consultant arrangements with AllerTein Therapeutics, LLC. R. Wood has received a grant from the National Institutes of Health, DBV, and Aimmune; has consultant arrangements with Stallergenes and Sanofi; is employed by Johns Hopkins University; and receives royalties from UpToDate. W. Burks has received grants from the Food Allergy & Anaphylaxis Network, NIH, and Wallace Research Foundation; has received personal fees from FARE, NIH Allergy, Immunology and Transplantation Research Committee Review Panel, NIH Hyper-sensitivity, Autoimmune, and Immune-mediated Diseases Study Section, World Allergy Organization, Adept Field Solutions, Aimmune Therapeutics, Inc, Epigv Biosciences, Inc, Genentech, GLG Research, Inc, Merck, SRA International, Stallergenes, Valeant Pharmaceuticals North America, LLC, PPD Development, LP, American Society for Microbiology, and AllerTein; and has received nonfinancial support from Dow AgroSciences, Insys Therapeutics, and Regeneron Pharmaceuticals, Inc. P. Dawson has received a grant from the NIH/National Institute of Allergy and Infectious Diseases/Division of Allergy, Immunology, and Transplantation. S. M. Jones is a member of the research advisory board for Food Allergy Research Education; has consultant arrangements with Stallergenes; has received grants from the NIH/National Institute of Allergy and Infectious Diseases, Food Allergy Research Education, Allergy Research Corporation, DBV Technologies, and the National Peanut Board; has received payment for lectures from the Kansas City Allergy Society, Mercy Children’s Hospital, Riley Children’s Hospital, Southwestern Medical School, Children’s Medical Center, the European Academy of Allergy & Clinical Immunology, the New York Allergy & Asthma Society, the Iowa Society of Allergy, Asthma & Immunology, and the University of Iowa Paul M. Seebohm Lectureship in Allergy. D. Y. M. Leung has received a grant from the NIH/National Institute of Allergy and Infectious Diseases. H. Sampson has received a grant from the National Institute of Allergy and Infectious Diseases; has consultant arrangements with AllerTein Therapeutics, LLC, Genentech, Sanofi, Stallergenes, and Merck; is a part-time employee of DBV Technologies as the Chief Scientific Officer; and has received stock options from AllerTein Therapeutics and DBV Therapeutics. S. Sicherer has received a grant from the National Institute of Allergy and Infectious Diseases and has received royalties from UpToDate. J. C. Clemente has received grants from the SUCCESS fund (GCO14-0560) and Crohn’s and Colitis Foundation of America (grant #362048). N. Shen declares no relevant conflicts of interest.

Received for publication November 30, 2015; revised February 24, 2016; accepted for publication March 22, 2016. Available online May 10, 2016.

CrossMark

The CrossMark symbol notifies online readers when updates have been made to the article such as errata or minor corrections 0091-6749/$36.00 © 2016 American Academy of Allergy, Asthma & Immunology http://dx.doi.org/10.1016/j.jaci.2016.03.041

Discuss this article on the JACI Journal Club blog: www.jaci-online.blogspot.com.

Cow’s milk allergy is the most common food allergy in young children, affecting 2% to 3%. Individuals with milk allergy are at risk for allergic reactions and also face challenges in finding suitable replacements for the nutritional content that milk-based products provide. A child may have to live with the limitations imposed by milk allergy for several years, as recent studies have shown that milk allergy often continues into later childhood
and adulthood. Parents of milk-allergic children often ask allergists to gauge whether their child’s milk allergy will resolve.

We hypothesized that gut microbiota play a role in the natural history of milk allergy, as the etiology of food allergy is thought to involve deviation from the default state of mucosal immune tolerance that may be driven by diet, commensal microbiota, and interactions between them. Variations in infant gut flora have been associated with allergy skin prick test (SPT) response, specific IgE (sIgE) levels, atopic dermatitis, and food allergy status. Much of this previous work has relied on culture methods, which allow for examination of species specifically targeted and cultured, but exclude the large majority of bacterial organisms that cannot be cultured. These excluded organisms may play key roles in the natural history of milk allergy.

In this study, we used high-throughput sequencing to comprehensively characterize the gut microbiota of 226 children aged 3 to 16 months with cow’s milk allergy. We followed these children up to age 8 years and examined for associations between early-life gut microbiota diversity, composition, and milk allergy resolution.

METHODS

Study protocols were approved by the institutional review boards of the participating institutions.

Study design and subjects

The subjects of this study are a subset of a larger observational cohort study by the Consortium of Food Allergy Research (CoFAR) of 512 participants with milk allergy, egg allergy, and/or moderate-to-severe atopic dermatitis but without known peanut allergy. Participants were recruited at age 3 to 15 months from 5 study centers across the United States and were followed over time. The study sites included the Icahn School of Medicine at Mount Sinai, New York; Duke University School of Medical Center, Durham, North Carolina; Johns Hopkins University School of Medicine, Baltimore, Maryland; National Jewish Health, Denver, Colorado; and Arkansas Children’s Hospital, Little Rock, Arkansas. The goal of the CoFAR observational study was to identify factors associated with the development of peanut allergy in a high-risk cohort. Examination of the natural histories of milk and egg allergy was a secondary objective.

We collected stool from 234 of the 244 CoFAR observational study participants who had milk allergy at study entry. Stool samples were collected at or near the time of enrollment. Samples were collected during a study visit or by the parent at home using a stool collection kit provided by CoFAR. For this study, we excluded from the analysis 3 subjects who submitted stool samples after age 17 months, yielding 231 stool samples from 231 participants for DNA isolation.

DNA isolation and sequencing

DNA was isolated using the MoBio Power Soil DNA Isolation kit (Carlsbad, Calif). The V4 region of the 16S rRNA gene was amplified with barcoded primers and 16S rRNA sequencing was performed on the Illumina MiSeq platform using 2 × 250 bp paired-end read. Stool samples from 5 participants yielded less than 2000 sequences/sample (2.2% of 231 samples sequenced) and these subjects were removed from the analysis, yielding a final sample size of 226 subjects for analysis. In total, 5,478,379 sequences were assigned to 16S rRNA gene sequences for the 226 samples, with a median of 23,682 sequences per sample.

Outcomes

Data were prospectively collected from study enrollment up through a visit at approximately age 8 years. Participants were considered to have milk allergy if they had either (1) positive physician-supervised oral food challenge or a convincing reaction and sensitization to milk by milk sIgE level of 0.35 kUA/L or more and/or SPT wheal of more than 3 mm, or (2) a flare of atopic dermatitis associated with milk ingestion along with a milk sIgE level of more than 5 kUA/L. At entry, dietary, medical, and social histories were obtained by questionnaires administered to the parents of participants. Milk sIgE levels measurement and milk SPT were carried out at entry and periodically thereafter as clinically indicated. Atopic dermatitis severity was graded on the basis of criteria previously described. Participants were evaluated in person at enrollment, 6 months, 12 months, and yearly thereafter with additional telephone follow-up between each visit. Milk allergy was considered persistent if the subject had milk allergy according to the above definitions at the last documented encounter.

We used logistic regression implemented in R 3.2.2 (R Foundation for Statistical Computing, Vienna, Austria) to test for the associations between early-life exposures that shaped the infant gut microbiome (mode of delivery, breast-feeding, solid food intake, antibiotic use) and milk allergy resolution by age 8 years or milk allergen sensitization.

Microbiome analyses

On the basis of observations from previous studies of marked shifts in the gut microbiome composition in early life associated with developmental stages (eg, predominant nutrition from breastmilk and formula until age 6 months, predominant nutrition from solid food and transition to whole milk or milk alternatives around 12 months), we a priori stratified the participants into the following 3 groups for microbiome analysis: participants whose stool samples were obtained at (1) age 3 to 6 months, (2) age 7 to 12 months, and (3) age 13 to 16 months. The members of the investigative team who conducted the microbiome and bioinformatic analyses had no role in acquiring or assessing the clinical results of the cohort study. Unless noted otherwise, we performed all analyses using Quantitative Insights into Microbial Ecology (QIIME) 1.8.0, an open-source bioinformatics pipeline for performing analysis of microbiome sequence data. Operational taxonomic units (OTUs), defined as taxonomic units based on DNA sequences that share high identity, were constructed using a more than 97% similarity threshold. Within the 3 age groups for analysis, alpha diversity (the richness of a sample in terms of the diversity of OTUs observed in it) was estimated using Faith’s phylogenetic diversity. Beta diversity (distance between samples based on differences in OTUs present in each sample) was measured using unweighted UniFrac. Principal coordinate analysis (PCoA) was used to visualize clustering patterns between samples based on beta diversity distances. Linear discriminant analysis effect size (LEfSe), a method for biomarker discovery, was used to determine taxa that best characterize each population, ie, bacterial groups associated with milk allergy resolution or persistence. LEfSe scores measure the consistency of differences in relative abundance between taxa in the groups analyzed (ie, resolution vs persistence), with a higher score indicating higher consistency. Association between microbiome composition and covariates was tested using PERMANOVA, a nonparametric test similar to ANOVA but that does not require the data to be normally distributed. Significance of PERMANOVA tests was determined using 999 permutations with adjustment for multiple testing.

Prediction of metagenome functional content

We used Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) 1.0.0 to predict metagenome function from the 16S rRNA data. Bray-Curtis distances were used to determine similarity.
of samples on the basis of metagenomic composition. We used Statistical Analysis of Metagenomic Profiles (STAMP) \(^1\) to analyze the predicted metagenome and identify pathways associated with resolution or persistence of milk allergy. The Benjamini-Hochberg procedure was used to control the false-discovery rate due to multiple testing.

Baseline characteristic comparisons and logistic regression results were considered statistically significant with unadjusted \(P\) value of less than .05, significant results from linear discriminant analysis (LDA) required \(P\) value of less than .05 and LDA score of more than 2.0, and PERMANOVA and metagenome analyses were considered statistically significant with adjusted \(P\) value of less than .05.

RESULTS

Study population

The baseline characteristics of the participants are presented in Table I. The study population was mostly white (77%), with more male (65.9%) than female children. Most children had been born vaginally (61.9%), with about half breast-feeding and almost all (96.9%) taking solid foods at entry. The median age of participants at the time of stool collection was 10.6 months (interquartile range, 4.2), with a range of 3.6 to 16.9 months. The median age at last follow-up was 80.0 months (interquartile range, 18.0), with no significant difference in age at last follow-up between those with resolution or persistence of milk allergy. Participants whose milk allergy resolved by age 8 years had significantly smaller milk SPT wheal size, lower milk sIgE levels, and milder atopic dermatitis at entry. The baseline characteristics of the participants stratified by age at stool collection (age 3-6 months \(n = 29\), 7-12 months \(n = 144\), 13-16 months \(n = 53\)) are presented in Table E1 in this article’s Online Repository at www.jacionline.org.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All subjects with milk allergy included in the analysis</th>
<th>Milk allergy persistent at age 8 y</th>
<th>Milk allergy resolved by age 8 y</th>
<th>(P) value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects, n (%)</td>
<td>226</td>
<td>98 (43.4)</td>
<td>128 (56.6)</td>
<td>.83</td>
</tr>
<tr>
<td>Age at stool collection (mo), n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-6</td>
<td>29</td>
<td>11 (37.9)</td>
<td>18 (62.1)</td>
<td></td>
</tr>
<tr>
<td>7-12</td>
<td>144</td>
<td>64 (44.4)</td>
<td>80 (55.6)</td>
<td></td>
</tr>
<tr>
<td>13-16</td>
<td>53</td>
<td>23 (43.4)</td>
<td>30 (56.6)</td>
<td></td>
</tr>
<tr>
<td>Age at last follow-up (mo), median (interquartile range)</td>
<td>80.0 (18.0)</td>
<td>79.9 (18.4)</td>
<td>80 (15.8)</td>
<td>.68†</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Female</td>
<td>77</td>
<td>33 (42.9)</td>
<td>44 (57.1)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>149</td>
<td>65 (43.6)</td>
<td>84 (56.4)</td>
<td></td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
<td>.13</td>
</tr>
<tr>
<td>White</td>
<td>174</td>
<td>72 (41.4)</td>
<td>102 (58.6)</td>
<td></td>
</tr>
<tr>
<td>Black/African-American</td>
<td>30</td>
<td>12 (40.0)</td>
<td>18 (60.0)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>19</td>
<td>13 (68.4)</td>
<td>6 (31.6)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>1 (33.3)</td>
<td>2 (66.7)</td>
<td></td>
</tr>
<tr>
<td>Baseline milk IgE level</td>
<td>2.1 \times 10^{-9}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2</td>
<td>91</td>
<td>20 (22.0)</td>
<td>71 (78.0)</td>
<td></td>
</tr>
<tr>
<td>\geq 2-10</td>
<td>68</td>
<td>30 (44.1)</td>
<td>38 (55.9)</td>
<td></td>
</tr>
<tr>
<td>>10</td>
<td>67</td>
<td>48 (71.6)</td>
<td>19 (28.4)</td>
<td></td>
</tr>
<tr>
<td>Baseline milk SPT response (wheal in mm), n (%)</td>
<td>1.1 \times 10^{-5}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5</td>
<td>63</td>
<td>12 (19.0)</td>
<td>51 (81.0)</td>
<td></td>
</tr>
<tr>
<td>5-10</td>
<td>82</td>
<td>41 (50.0)</td>
<td>41 (50.0)</td>
<td></td>
</tr>
<tr>
<td>>10</td>
<td>81</td>
<td>45 (55.6)</td>
<td>36 (44.4)</td>
<td></td>
</tr>
<tr>
<td>Baseline AD severity, n (%)</td>
<td>.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>29</td>
<td>6 (20.7)</td>
<td>23 (79.3)</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>32</td>
<td>11 (34.4)</td>
<td>21 (65.6)</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>126</td>
<td>62 (49.2)</td>
<td>64 (50.8)</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>39</td>
<td>19 (48.7)</td>
<td>20 (51.3)</td>
<td></td>
</tr>
<tr>
<td>Breast-feeding at entry, n (%)</td>
<td>.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>36</td>
<td>14 (38.9)</td>
<td>22 (61.1)</td>
<td></td>
</tr>
<tr>
<td>Yes, currently</td>
<td>115</td>
<td>47 (40.9)</td>
<td>68 (59.1)</td>
<td></td>
</tr>
<tr>
<td>Yes, but no longer</td>
<td>75</td>
<td>37 (49.3)</td>
<td>38 (50.7)</td>
<td></td>
</tr>
<tr>
<td>Mode of delivery, n (%)</td>
<td>.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaginal</td>
<td>140</td>
<td>62 (44.3)</td>
<td>78 (55.7)</td>
<td></td>
</tr>
<tr>
<td>C-section</td>
<td>85</td>
<td>36 (42.4)</td>
<td>49 (57.6)</td>
<td></td>
</tr>
<tr>
<td>Solid food intake, n (%)</td>
<td>.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>219</td>
<td>96 (43.8)</td>
<td>123 (56.2)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>7</td>
<td>2 (28.6)</td>
<td>5 (71.4)</td>
<td></td>
</tr>
<tr>
<td>Antibiotics, lifetime prior to sampling, n (%)</td>
<td>.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>142</td>
<td>61 (43.0)</td>
<td>81 (57.0)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>84</td>
<td>37 (44.0)</td>
<td>47 (56.0)</td>
<td></td>
</tr>
</tbody>
</table>

*Fisher exact test.
†Wilcoxon rank sum test.
‡Data not available for 1 subject.
resolution by age 8 years or milk allergen sensitization (see Table E2 in this article’s Online Repository at www.jacionline.org).

Distinct gut microbiome in 3- to 6-month-old subjects with milk allergy resolution by age 8 years

Subjects sampled at age 3 to 6 months who achieved milk allergy resolution by age 8 years had a distinct gut microbiome composition compared with subjects sampled at the same age whose milk allergy persisted (PERMANOVA $P = .047$). This distinction was not observed in subjects sampled later in life at age 7 to 12 months (PERMANOVA $P = .39$) or at age 13 to 16 months (PERMANOVA $P = .96$). There were no significant effects of antibiotic use or atopic dermatitis severity on bacterial composition in the subjects sampled at age 3 to 6 months (PERMANOVA $P = .53$ and .80, respectively), indicating that neither antibiotic use nor atopic dermatitis were confounders of the association between gut microbiome composition and milk allergy resolution. Results from LEfSe and PCoA confirmed the distinct gut microbiome composition associated with milk allergy resolution.

LDA revealed distinct taxa in the microbiome of 3- to 6-month-old subjects with milk allergy resolution versus milk allergy persistence (Fig 1). Among subjects sampled at age 3 to 6 months, the Firmicutes phylum and Clostridia class were enriched in the infant gut microbiome of subjects whose milk allergy resolved by age 8 years, whereas Bacteroidetes and Enterobacter were characteristic of subjects whose milk allergy did not resolve by age 8 years (Fig 1, B). These findings were consistent when covariates (antibiotics, solid food intake, mode of delivery, race, and breast-feeding) were taken into account in the LEfSe analysis (Fig E1).

PCoA demonstrated separation in gut microbiome composition between subjects sampled at age 3 to 6 months who achieved milk allergy resolution versus subjects with persistent milk allergy (Fig 2, A). PCoA did not show separation reflecting distinct gut microbiome composition related to milk allergy resolution in subjects sampled at age 7 to 12 or 13 to 16 months (Fig 2, B and C).

Trend toward increased bacterial diversity in subjects with milk allergy resolution by age 8 years

Compared with subjects whose milk allergy did not resolve by midchildhood, the gut microbiome of participants with milk allergy resolution showed a trend of increased bacterial diversity. This trend was most pronounced in subjects sampled at age 3 to 6 months, with decreasing difference in those sampled at age 7 to 12 months and little difference at age 13 to 16 months (Fig 3).

Distinct metagenome in subjects with milk allergy resolution

PCoA of predicted metagenome function showed a significant separation in bacterial functional pathways related to milk allergy resolution in subjects sampled at age 3 to 6 months (Fig 4, A; PERMANOVA $P = .004$), but not in those sampled later in life (Fig 4, B and C; PERMANOVA $P = .79$ at age 7-12 months and PERMANOVA $P = .72$ at age 13-16 months). The only metabolic pathway that was differentially enriched in the metagenome of subjects sampled at age 3 to 6 months was fatty acid metabolism, which was decreased ($\eta^2 = 0.43; P = .034$) in subjects whose milk allergy resolved (Fig 5; see Table E3 in this article’s Online Repository at www.jacionline.org). Subjects sampled at older ages did not show differential abundance of any metabolic pathways (Table E3).
Correlation between gut microbiome diversity, composition, and milk sIgE level or milk SPT

Milk sIgE levels or milk SPT wheal size at baseline, change in levels, or slope of these measures over time were not significantly correlated with abundance of any microbial taxa. Alpha diversity was not significantly correlated with milk sIgE level in any age group (PERMANOVA $P = .40$ in age 3-6 months; PERMANOVA $P = .08$ in age 7-12 months; PERMANOVA $P = .18$ in age 13-16 months), nor with milk SPT wheal size in any age group (PERMANOVA $P = .32$ in age 3-6 months; PERMANOVA $P = .10$ in age 7-12 months; PERMANOVA $P = .27$ in age 13-16 months).

DISCUSSION

We found that gut microbiome composition of milk-allergic children was associated with resolution of milk allergy by age 8 years, with enrichment of Clostridia and Firmicutes in the 3- to 6-month-old gut microbiome of subjects whose milk allergy later resolved. Our examination of predicted metagenome function showed differential bacterial function associated with milk allergy resolution, with decreased fatty acid metabolism in resolvers.

Comparison with other studies

Our study is the first to examine the relationship between the microbiome and food allergy resolution. Previous studies have examined associations between the gut microbiome and food allergy status. Using bacterial cultures, Thompson-Chagoyan et al. found that compared with healthy infants, infants allergic to cow’s milk had higher total bacteria and anaerobic counts; after 6 months during which milk-allergic subjects took extensively hydrolyzed formula and healthy control subjects took cow’s milk formula, the milk-allergic group had higher proportions of lactobacilli and lower proportions of enterobacteria and bifidobacteria. Major limitations of this study included reliance on bacterial culture (which cannot characterize most bacterial.
taxa, which are unculturable) and differential diet as a confounder of the association between gut microbiome and food allergy status. Ling et al20 reported enrichment of \textit{Clostridium sensu stricto, Butyricicoccus, Clostridiacaeae I, and Ruminococaceae} sequences in 34 Chinese infants with food allergy to various foods compared with 45 healthy controls, but half of the “food allergic” had non-IgE-mediated food allergy.20 Using a murine model of food allergy, Noval Rivas et al21 reported that ovalbumin-sensitized IL-4raF709 mice had differential abundance of \textit{Lachnospiraceae, Lactobacillaceae, Rikenellaceae}, and \textit{Porphyromonadaceae} compared with wild-type mice, and reconstitution of wild-type mice with the microbiota from these allergen-sensitized mice promoted ovalbumin-sIgE responses. Although the above studies reported differences in bacterial composition related to food allergy status, none examined resolution of food allergy as we did in this study.

We found taxa from the \textit{Clostridium} class and \textit{Firmicutes} phylum to be enriched in human subjects with milk allergy resolution. Such taxa have been previously linked to immune tolerance in mouse models of allergy and protection from allergic inflammation in subjects with eosinophilic esophagitis. Atarashi et al22 identified 17 strains of bacteria from human stool that enhanced Treg-cell abundance and induced key anti-inflammatory markers such as IL-10 and inducible T-cell costimulator in Treg cells upon inoculation into germ-free mice, with genome sequencing revealing that all 17 strains were taxa within \textit{Clostridia}. Oral administration of these 17 \textit{Clostridia} strains into mice attenuated disease in models of colitis and allergic diarrhea.22 Stefka et al23 found that gnotobiotic mice colonized with \textit{Clostridium} clusters protected against sensitization to peanut/cholera toxin, with reduced levels of peanut-specific and total IgE compared with germ-free controls and no temperature drop upon allergen challenge. In addition, \textit{Clostridia}-colonized mice had significantly increased proportions of Foxp3+ Treg cells in their colonic lamina propria and increased concentrations of fecal IgA compared with germ-free mice.23 \textit{Clostridia} colonization induced IL-22 production by RORgt+ innate lymphoid cells and T cells, which reduced the concentration of serum allergen, supporting the concept that \textit{Clostridia} play a critical role in regulating sensitization to food allergens.23 A strength of our study is that in contrast to these previous murine studies, it provides human data to support that \textit{Clostridia} play a role in allergy and inflammation. With regard to \textit{Firmicutes}, a study of 33 pediatric subjects with eosinophilic esophagitis and 35 normal controls showed that taxa from the \textit{Firmicutes} phylum predominated the esophageal microbiota of control subjects.24

The gut microbiome of our 3- to 6-month-old subjects with persistent milk allergy was enriched with taxa from phylum \textit{Bacteroidetes}, which is consistent with a previous study demonstrating a predominance of this phylum in infants with milk allergy and high risk of chronic allergic disease. Specifically, Kirjavainen et al25 found high abundance of \textit{Bacteroides} in the gut microbiome of infants with a high degree of milk allergy (as demonstrated by reaction to extensively hydrolyzed formula), early onset atopic eczema, and a strong family history of atopic disorders. Our results and those of Kirjavainen et al are in contrast to findings from murine models, where colonization with \textit{Bacteroides} was observed to correct T H1/TH2 imbalances26 and induce regulatory T-cell development.27,28

The results of our predicted metagenome analyses showed that bacterial functional pathways related to fatty acid metabolism were significantly reduced in subjects whose milk allergy resolved with time. This finding suggests that decreased fatty acid metabolism by gut microbiota may be helpful toward reducing long-term allergy risk. Gas liquid chromatography studies of infant stool composition show lower levels of branched-chain short fatty acids in healthy infants relative to infants with allergy to cow’s milk.29 These levels were observed cross-sectionally, so it is not known if lower levels of fatty acids would be found in infants whose milk allergy resolved with time versus those with persistent milk allergy. Overall, lipids are known to facilitate the passage of food allergens through intestinal epithelial barriers and affect the allergenicity of food proteins.30 Lipids in cow’s milk itself can induce the expansion of invariant natural killer T (iNKT) cells and release of IL-4, IL-5, and IL-13, leading to a T H2-dominant milieu.31 Attenuation
The associations between microbiome composition, metagenome functional content, and milk allergy resolution were specific to subjects sampled at 3 to 6 months in our study, with no significant associations in subjects sampled at 7 to 12 months or 13 to 16 months. Two potential interpretations of this are as follows: (1) early infancy (ie, 3-6 months) is a particular developmental time window during which gut microbiota shapes the course of food allergy, and gut microbiota at later ages (eg, 7-16 months) have little effect on food allergy course, and (2) gut microbiota is associated with food allergy course at different age stages, but confounders obscure this signal when subjects are sampled at more than age 6 months. Early infancy could be a key developmental time window, as we and others have shown age-dependent associations between infant gut microbiome and allergy. Azad et al\(^{32}\) found that gut microbial richness at age 3 months was associated with increased likelihood of food sensitization by 1 year, whereas there was no association between microbial richness at 12 months and food sensitization. Similarly, Abrahamsson et al\(^{13}\) found that gut microbiota diversity at age 1 month but not at age 12 months was associated with atopic dermatitis during the first 2 years of life. Porcine models have shown that the postnatal environment from as early as the first day of life influences gut microbiota and subsequent metabolic phenotypes.\(^{34}\) Murine models also support that age-sensitive contact with microbiota is critical for establishing tolerance to later exposures.\(^ {35}\) Our collective findings support the theory that factors influencing early immune system development may be particularly important for subsequent allergy development.\(^ {36}\) However, the intestinal microbiome in early life is markedly dynamic with dramatic shifts after the introduction of solid foods leading to an “adult-like” profile.\(^ {12,37}\) Thus, it is possible that associations between gut microbiota and allergy outcomes are obscured after the introduction of solid food in the diet, for example, at approximately 6 months of age.

Early infancy as a time window shaping the course of food allergy

The associations between microbiome composition, metagenome functional content, and milk allergy resolution were specific to subjects sampled at 3 to 6 months in our study, with no significant associations in subjects sampled at 7 to 12 months or 13 to 16 months. Two potential interpretations of this are as follows: (1) early infancy (ie, 3-6 months) is a particular developmental time window during which gut microbiota shapes the course of food allergy, and gut microbiota at later ages (eg, 7-16 months) have little effect on food allergy course, and (2) gut microbiota is associated with food allergy course at different age stages, but confounders obscure this signal when subjects are sampled at more than age 6 months. Early infancy could be a key developmental time window, as we and others have shown age-dependent associations between infant gut microbiome and allergy. Azad et al\(^{32}\) found that gut microbial richness at age 3 months was associated with increased likelihood of food sensitization by 1 year, whereas there was no association between microbial richness at 12 months and food sensitization. Similarly, Abrahamsson et al\(^{13}\) found that gut microbiota diversity at age 1 month but not at age 12 months was associated with atopic dermatitis during the first 2 years of life. Porcine models have shown that the postnatal environment from as early as the first day of life influences gut microbiota and subsequent metabolic phenotypes.\(^ {34}\) Murine models also support that age-sensitive contact with microbiota is critical for establishing tolerance to later exposures.\(^ {35}\) Our collective findings support the theory that factors influencing early immune system development may be particularly important for subsequent allergy development.\(^ {36}\) However, the intestinal microbiome in early life is markedly dynamic with dramatic shifts after the introduction of solid foods leading to an “adult-like” profile.\(^ {12,37}\) Thus, it is possible that associations between gut microbiota and allergy outcomes are obscured after the introduction of solid food in the diet, for example, at approximately 6 months of age.

No association between gut microbiota and milk sIgE or milk SPT

We did not find an association between gut microbiota and sensitization (by sIgE or SPT) to milk at baseline, confirming previously reported results. Adlerberth et al\(^ {18}\) found no association between culturable bacteria and food sensitization by 18 months in 3 cohorts of European infants. Similarly, Kendler et al\(^ {38}\) reported no association between culturable gut microbiota and sensitization to common food allergens including milk, casein, egg, peanut, and hazelnut.\(^ {38}\) Experimental models suggest that food antigen sensitization results from inhibition of the immune system default of tolerance.\(^ {39}\) The cross-sectional design of our study precludes us from determining whether changes over time in gut microbiota composition correlate with the decline in IgE levels associated with food allergy resolution. It is also possible that the mechanisms by which early-life microbiome composition are associated with resolution are indirect through the production of bacterial metabolites. Indeed, short-chain fatty acids such as butyrate have been shown to have anti-inflammatory properties\(^ {22}\) and to regulate macrophage function.\(^ {40}\) Overall, our results suggest that gut microbiota may not play a direct role in tolerance inhibition leading to food allergen sensitization, but may instead help reestablish the default state of tolerance.

Limitations and future directions

Although we examined the gut microbiome of 226 subjects with milk allergy, significant associations between gut microbiome composition, predicted metagenome function, and milk allergy resolution were observed only in those sampled at age 3 to 6 months. This subset proved to be informative and supports the notion that the gut microbiome of young infants may be of particular interest and should be targeted with larger sample sizes in future studies that include longitudinal sampling. We note that previous studies of the early-life microbiome have had similar or smaller sample size for young infants.\(^ {31,42}\) A secondary analysis of microbiota associated with tolerance of baked milk would have been of interest, but we did not characterize baked milk consumption in a rigorous manner. Ability to consume products with baked milk is associated with accelerated resolution of milk allergy.\(^ {43,44}\) In addition, although our findings support the concept that specific gut microbial taxa are associated with milk allergy resolution, we caution that our results cannot...
determine causality and do not imply that probiotic supplementation with these taxa should be implemented as treatment for milk allergy without prospective study. Probiotic supplementation, particularly with *Lactobacillus* and *Bifidobacterium* species, has been explored as potential treatment for cow’s milk allergy in randomized controlled trials with mixed results.\(^45,46\) The taxa we identified differ from those already targeted and would require prospective study for efficacy as well as safety before their potential use as treatment for cow’s milk allergy.\(^41\)

Conclusions

We found enrichment of *Clostridia* and *Firmicutes* in the infant gut microbiome of 3- to 6-month-old subjects whose milk allergy resolved by age 8 years. The microbiota of these young infants whose milk allergy resolved was associated with decreased fatty acid metabolism. Our results are the first to address the relationship between gut microbiota and food allergy resolution, and our findings suggest directions for prospective examination of the highlighted taxa for potential therapeutic consideration. Early infancy is a window during which gut microbiota may shape food allergy outcomes in childhood.

We thank Dr Marshall Plaut, CoFAR scientific and medical officer and chief of the National Institute of Allergy and Infectious Diseases, Food Allergy, Atopic Dermatitis, and Allergic Mechanisms Section. We thank the families who kindly participated. We thank the staff of the clinical research units at each institution and the Statistical and Clinical Coordinating Center including Alice Henning, whom we thank in particular.

Key messages

- *Clostridia* and *Firmicutes* were enriched in the gut microbiome of milk-allergic children at age 3 to 6 months whose milk allergy resolved by age 8 years.
- Metagenome functional prediction showed decreased fatty acid metabolism in the early infant gut microbiome of children whose milk allergy resolved.

REFERENCES

